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Preface 

 
 
 
 Growing up, I had always been fascinated by the thought of navigating 
by the stars. However, it instinctively seemed to me an art beyond my total 
understanding. Why, I don’t know other than celestial navigation has always 
had a shroud of mystery surrounding it, no doubt to keep the hands from 
mutiny. Some time in my 40s, I began to discard my preconceived notions 
regarding things that required ‘natural’ talent, and thus I began a journey of 
discovery. This book represents my efforts at teaching myself ‘celestial’, 
although it is not comprehensive of all my studies in this field. Like most 
educational endeavors, one may sometimes plunge too deeply in seeking arcane 
knowledge, and risk loosing the interest and attention of the reader. With that 
in mind, this book is dedicated simply to removing the cloak of mystery; to 
teach the concepts, some interesting history, the techniques, and computational 
methods using the simple pocket scientific calculator. And yes, also how to 
build your own navigational tools. 
 
 My intention is for this to be used as a self-teaching tool for those who 
have a desire to learn celestial from the intuitive, academic, and practical points 
of view. This book should also interest experienced navigators who are tired of 
simply ‘turning the crank’ with tables and would like a better behind-the-scenes 
knowledge. With the prevalence of hand electronic calculators, the traditional 
methods of using sight-reduction tables with pre-computed solutions will 
hardly be mentioned here. I am referring to the typical Hydrographic Office 
methods H.O. 249 and H.O. 229. Rather, the essential background and 
equations to the solutions will be presented such that the reader can calculate 
the answers precisely with a hand calculator and understand the why. You will 
need a scientific calculator, those having trigonometric functions and their 
inverse functions.  Programmable graphing calculators such as the TI-86 and 
TI-89 are excellent for the methods described in the book. To those readers 
familiar with ‘celestial’, they will notice that I have departed the usual norms 
found in celestial navigation texts. I use a consistent sign convention which 
allows me to discard same-name and opposite-name rules. 
 
 

Rodger Farley 2002 
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Variable and Acronym List 
 
Hs  Altitude angle as reported on the sextant scale 
Ha  Apparent altitude angle 
Ho  Observed, or true altitude angle 
Hc  Calculated altitude angle 
IC  Index correction 
SD  Angular semi-diameter of sun or moon 
UL  Upper limb of sun or moon 
LL  Lower limb of sun or moon 
GHA  Greenwich hour angle 
GHAhour Greenwich hour angle as tabulated at a specific integer hour 
DEC  Declination angle 
DEChour Declination angle as tabulated at a specific integer hour 
SHA  Sidereal hour angle 
LHA  Local hour angle 
Zo  Uncorrected azimuth angle 
Zn  Azimuth angle from true north 
v  Hourly variance from the nominal GHA rate, arcmin per hour 
d  Hourly declination rate, arcmin per hour 
heye  Eye height above the water, meters 
CorrDIP Correction for dip of the horizon due to eye height 
Corrv  Correction to the tabular GHA for the variance v 
Corrd  Correction to the tabular declination using rate d 
CorrGHA Correction to the tabular GHA for the minutes and seconds 
CorrALT Correction to the sextant altitude for refraction, parallax, and 

semidiameter 
R  Correction for atmospheric refraction 
Doffset  Offset distance using the intercept method, nautical miles 
LAT  Latitude 
LON  Longitude 
LATA  Assumed latitude 
LONA  Assumed longitude 
LATDR Estimated latitude, or dead-reckoning latitude 
LONDR  Estimated longitude, or dead-reckoning longitude 
LOP  Line of position 
LAN  Local apparent noon 
LMT  Local mean time 



 5 

Chapter One 
Early Related History 

 
 
 
Why 360 degrees in a circle? 
 If you were an early astronomer, you would have noticed that the stars 
rotate counterclockwise (ccw) about Polaris at the rate of seemingly once per 
day.  And that as the year moved on, the constellation’s position would slowly 
crank around as well, once per year ccw.  The planets were mysterious, and 
thought to be gods as they roamed around the night sky, only going thru 
certain constellations, named the zodiac (in the ecliptic plane).  You would have 
noticed that after ¼ of a year had passed, or ~ 90 days, that the constellation 
had turned ccw about ¼ of a circle.  It would have seemed that the angle of 
rotation per day was 1/90 of a quarter circle.  A degree could be thought of as 
a heavenly angular unit, which is quite a coincidence with the Babylonian base 
60 number system which established the angle of an equilateral triangle as 60º. 

The Egyptians had divided the day into 24 hours, and the 
Mesopotamians further divided the hour into 60 minutes, 60 seconds per 
minute.  It is easy to see the analogy between angle and clock time, since the 
angle was further divided into 60 arcminutes per degree, and 60 arcseconds per 
arcminute.  An arcminute of arc length on the surface of our planet defined the 
unit of distance; a nautical mile, which = 1.15 statute miles.  By the way, mile 
comes from the Latin milia for 1000 double paces of a Roman soldier. 
 
Size of the Earth 
 In the Near East during the 3rd century BC lived an astronomer-
philosopher by the name of Eratosthenes, who was the director of the 
Egyptian Great Library of Alexandria.  In one of the scroll books he read that 
on the summer solstice June 21 in Syene (south of Alexandria), one could see 
the sun’s reflection at the bottom of deep wells (on tropic of Cancer).  He 
wondered that on the same day in Alexandria, a stick would cast a measurable 
shadow.  The ancient Greeks had hypothesized that the earth was round, and 
this observation by Eratosthenes confirmed the curvature of the Earth.  But 
how big was it?  On June 21 he measured the angle cast by the stick and saw 
that it was approximately 1/50th of a full circle (7.2 degrees).  He hired a man 
to pace out the distance between Alexandria and Syene, who reported it was 
500 miles.  If 500 miles was the arc length for 1/50 of a huge circle, then the 
Earth’s circumference would be 50 times longer, or 50 x 500 = 25000 miles.  
Simple tools and an enlightened mind can produce extraordinary results! 
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Calendar 
 Very early calendars were based on the lunar month, 29 ½ days.  This 
produced a 12-month year with only 354 days.  Unfortunately, this would ‘drift’ 
the seasons backwards 11 ¼ days every year according to the old lunar 
calendars.  Julius Caesar abolished the lunar year, used instead the position of 
the sun and fixed the true year at 365 ¼ days, and decreed a leap day every 4 
years to make up for the ¼ day loss per Julian year of 365 days.  Their 
astronomy was not accurate enough to know that a tropical year is 365.2424 
days long; 11 minutes and 14 seconds shorter than 365 ¼ days.  This difference 
adds a day every 128.2 years, so in 1582, the Gregorian calendar was instituted 
in which 10 days that particular October were dropped to resynchronize the 
calendar with the seasons, and 3 leap year days would not be counted every 400 
years to maintain synchronicity. 
 
Early Navigation 
 The easiest form of navigating was to never leave sight of the coast.  
Species of fish and birds, and the color and temperature of the water gave 
clues, as well as the composition of the bottom.  When one neared the entrance 
to the Nile on the Mediterranean, the bottom became rich black, indicating that 
you should turn south.  Why venture out into the deep blue water?  Because of 
coastal pirates, and storms that pitch your boat onto a rocky coast.  Presumably 
also to take a shorter route.  One could follow flights of birds to cross the 
Atlantic, from Europe to Iceland to Greenland to Newfoundland.  In the 
Pacific, one could follow birds and know that a stationary cloud on the horizon 
meant an island under it.  Polynesian navigators could also read the swells and 
waves, determine in which direction land would lie due to the interference in 
the wave patterns produced by a land mass. 
 And then there are the stars.  One in particular, the north pole star, 
Polaris.  For any given port city, Polaris would always be more or less at a 
constant altitude angle above the horizon.  Latitude hooks, the kamal, and the 
astrolabe are ancient tools that allowed one to measure the altitude of Polaris.  
So long as your last stage of sailing was due east or west, you could get back 
home if Polaris was at the same altitude angle as when you left.  If you knew 
the altitude angle of Polaris for your destination, you could sail north or south 
to pick up the correct Polaris altitude, then ‘run down the latitude’ until you 
arrive at the destination.  Determining longitude would remain a mystery for 
many ages.  Techniques used in surveying were adopted for use in navigation, 
two of which are illustrated on the next page. 
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‘Running down the latitude’ from home to destination,  Trade wind sailing following 
changing latitude where safe to pick up trade winds  separate latitudes  
 
 
 

Surveying techniques with absolute angles and relative angles 
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Chapter Two 
Review of Fundamentals 

 
 
Orbits 
 The Earth’s orbit about the Sun is a slightly elliptical one, with a mean 
distance from the Sun equal to 1 AU (AU = Astronomical Unit = 149,597,870. 
km).  This means that the Earth is sometimes a little closer and sometimes a 
little farther away from the Sun than 1 AU.  When it’s closer, it is like going 
downhill where the Earth travels a little faster thru its orbital path. When it’s 
farther away, it is like going uphill where the Earth travels a little slower.  If the 
Earth’s orbit were perfectly circular, and was not perturbed by any other body 
(such as the Moon, Venus, Mars, or Jupiter), in which case the orbital velocity 
would be unvarying and it could act like a perfect clock.  This brings us to the 
next topic… 
 
Mean Sun 
 The mean Sun is a fictional Sun, the position of the Sun in the sky if the 
Earth’s axis was not tilted and its orbit were truly circular.  We base our clocks 
on the mean Sun, and so the mean Sun 
is another way of saying the year-
averaged 24 hour clock time.  This leads 
to the situation where the true Sun is up 
to 16 minutes too fast or 14 minutes too 
slow from clock reckoning.  This time 
difference between the mean Sun and 
true Sun is known as the Equation of 
Time. The Equation of Time at local 
noon is noted in the Nautical Almanac 
for each day.  For several months at a 
time, local noon of the true Sun will be 
faster or slower than clock noon due to 
the combined effects of Earth’s orbital 
eccentricity and orbital velocity.  When 
we graph the Equation of Time in 
combination with the Sun’s declination 
angle, we produce a shape known as the 
analemma.  The definition and 
significance of solar declination will be 
explained in a later section. 
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Time 
 With a sundial to tell us local noon, and the equation of time to tell us 
the difference between solar and mean noon, a simple clock could always be 
reset daily.  We think we know what we mean when we speak of time, but how 
to measure it?  If we use the Earth as a clock, we could set up a fixed telescope 
pointing at the sky due south with a vertical hair line in the eyepiece and pick a 
guide star that will pass across the hairline.  After 23.93 hours (a sidereal day, 
more later) from when the guide star first crossed the hairline, the star will pass 
again which indicates that the earth has made a complete revolution in inertial 
space.  Mechanical clocks could be reset daily according to observations of 
these guide stars.  A small problem with this reasonable approach is that the 
Earth’s spin rate is not completely steady, nor is the direction of the Earth’s 
spin axis.  It was hard to measure, as the Earth was our best clock, until atomic 
clocks showed that the Earth’s rate of rotation is gradually slowing down due 
mainly to tidal friction, which is a means of momentum transference between 
the Moon and Earth.  Thus we keep fiddling with the definition of time to fit 
our observations of the heavens.  But orbital calculations for planets and lunar 
positions (ephemeris) must be based on an unvarying absolute time scale.  This 
time scale that astronomers use is called Ephemeris Time.  Einstein of course 
disagrees with an absolute time scale, but it is relative to Earth’s orbital speed. 
 
Time Standards for Celestial Navigation 
 Universal Time (UT, solar time, GMT) 
This standard keeps and resets time according to the mean motion of the Sun 
across the sky over Greenwich England, the prime meridian, (also known as 
Greenwich Mean Time GMT). UT is noted on a 24-hour scale, like military 
time.  The data in the nautical almanac is based on UT. 
 
Universal Time Coordinated (UTC) 
 This is the basis of short wave radio broadcasts from WWV in Fort 
Collins Colorado and WWVH in Hawaii (2.5, 5,10,15,20 MHz).  It is also on a 
24-hour scale.  It is synchronized with International Atomic Time, but can be 
an integral number of seconds off in order to be coordinated with UT such 
that it is no more than 0.9 seconds different from UT.  Initial calibration errors 
when the atomic second was being defined in the late 1950’s, along with the 
gradual slowing of the Earth’s rotation, we find ourselves with one more 
second of atomic time per year than a current solar year.  A leap second is 
added usually in the last minute of December or June to be within the 0.9 
seconds of UT.  UTC is the time that you will use for celestial navigation using 
the nautical almanac, even though strictly speaking UT is the proper input to 
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the tables.  The radio time ticks are more accessible, and 0.9 seconds is well 
within reasonable error.   
 
Sidereal Year, Solar Year, Sidereal Day, Solar Day 
 There are 365.256 solar days in a sidereal year, the Earth’s orbital period 
with respect to an inertially fixed reference axis (fixed in the ‘ether’ of space, or 
in actuality with respect to very distant stars).  But due to the backward 
precession-drift clockwise of the equinox (the Earth orbits counterclockwise as 
viewed above the north pole), our solar year (also referred to as tropical year) 
catches up faster at 365.242 solar days.  We base the calendar on this number as 
it is tied into the seasons.  With 360 degrees in a complete circle, coincidentally 
(or not), that’s approximately 1 degree of orbital motion per day (360 
degrees/365.242 days).  That means inertially the Earth really turns about 361 
degrees every 24 hours in order to catch up with the Sun due to orbital motion.  
That is our common solar (synodic) day of 24 hours.  However, the true inertial 
period of rotation is the time it takes the Earth to spin in 360 degrees using say, 
the fixed stars as a guide clock.  That is a sidereal day, 23.93447 hours (~ 24 x 
360/361).  The position of the stars can be measured as elapsed time from 
when the celestial prime meridian passed, and that number reduced to degrees 
of celestial longitude (SHA) due to the known rotational period of the Earth, a 
sidereal day.  As a side note, this system of sidereal hour angle SHA is the 
negative of what an astronomer uses, which is right ascension (RA). 
 

 
The difference between a Sidereal day and a Solar day 
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Latitude and Longitude 
 I will not say much on this, other than bringing your attention to the 
illustration, which show longitude lines individually, latitude lines individually, 

and the combination of the 
two.  This gives us a grid 
pattern by which unique 
locations can be associated to 
the spherical map using a 
longitude coordinate and a 
latitude coordinate.  The 
prime N-S longitude meridian 
(the zero longitude) has been 
designated as passing thru the 
old royal observatory in 
Greenwich England. East of 
Greenwich is positive 
longitude, and west of 
Greenwich is negative 
longitude.   North latitude 
coordinates are positive 
numbers, south latitude 
coordinates are negative.   
 
Maps and Charts 
 The most common 

chart type is the modern Mercator projection, which is a mathematically modified 
version of the original cylindrical projection.  On this type of chart, for small 
areas only in the map’s origin, true shapes are preserved, a property known as 
conformality.  Straight line courses plotted on a Mercator map have the property 
of maintaining the same bearing from true north all along the line, and is 
known as a rumb line.  This is a great aid to navigators, as the course can be a 
fixed bearing between waypoints.   
 If you look at a globe and stretch a string from point A to point B, the 
path on the globe is a great circle and it constitutes the shortest distance between 
two points on a sphere.  The unfortunate characteristic of a great circle path is 
that the bearing relative to north changes along the length of the path, most 
annoying.  On a Mercator map, a great circle course will have the appearance of 
an arc, and not look like the shortest distance.  In fact, a rumb line course 
mapped onto a sphere will eventually spiral around like a clock spring until it 
terminates at either the N or S pole.  
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Chapter Three 
Celestial Navigation Concepts 

 
 
 
 There are three common elements to celestial navigation, whether one is 
floating in space, or floating on the ocean.  They are; 1) knowledge of the 
positions of heavenly bodies with respect to time, 2) measurement of the time 
of observation, and 3) angular measurements (altitudes) between heavenly 
objects and a known reference.  The reference can be another heavenly object, 
or in the case of marine navigation, the horizon.  If one only has part of the 
required 3 elements, then only a partial navigational solution will result.  In 3 
dimensions, one will need 3 independent measurements to establish a 3-D 
position fix.  Conveniently, the Earth is more or less a sphere, which allows an 
ingeniously simple technique to be employed. The Earth, being a sphere, means 
we already know one surface that we must be on.  That being the case, all we 
need are 2 measurements to acquire our fixed position on the surface. 
 
Here listed is the Generalized Celestial Navigation Procedure: 
 Estimate the current position 
 Measure altitude angles of identified heavenly bodies 
 Measure time at observation with a chronometer 
 Make corrections to measurements 
 Look up tabulated ephemeris data in the nautical almanac 
 Employ error-reduction techniques 
 Employ a calculation algorithm 
 Map the results, determine the positional fix 
 
 The 4 basic tools used are the sextant, chronometer, nautical almanac, 
and calculator (in lieu of pre-calculated tabulated solutions). 
 In this book and in most celestial navigation texts, altitudes (elevation 
angle above the horizon) of the observed heavenly object s are designated with 
these variables: 
Hs = the raw angle measurement reported by the sextant’s scale. 
Ha = the apparent altitude, when instrument errors and horizon errors are 
accounted for. 
Ho = the true observed altitude, correcting Ha for atmospheric refraction and 
geometric viewing errors (parallax) associated with the heavenly object. 
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THE FOUR BASIC CELESTIAL NAVIGATION TOOLS 
 
 
 
 

 
 
Sextant, Chronometer (time piece), Nautical Almanac, and a Calculator 
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 Geographical Position (GP) 
 The geographical position of a heavenly object is the spot on the Earth’s 
surface where an observer would see the object directly over head, the zenith 
point.  You can think of it as where a line connecting the center of the Earth 
and the center of the heavenly object intersects the Earth’s surface.  Since the 
Earth is spinning on it’s axis, the GP is always changing, even for Polaris since 
it is not exactly on the axis (it’s close…) 
 
Circles of Position (COP) 
 Every heavenly object seen from the Earth can be thought of as shining 
a spotlight on the Earth’s surface.  This spotlight, in turn, cast concentric 
circles on the Earth’s surface about the GP.  At a given moment anybody 
anywhere on a particular circle will observe the exact same altitude for the 
object in question.  These are also known as circles of constant altitude. 
For the most part, stars are so far away that their light across the solar system is 
parallel.  The Sun is sufficiently far away that light from any point on the Sun’s 
disk will be more or less parallel across the face of the Earth.  Not so for the 
Moon. 
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Parallax 
 This is a geometrical error that near-by heavenly objects, namely the 
Moon, are guilty of.  Instead of a spotlight of parallel light, a near-by object 
casts more of a conical floodlight. The reason why parallax matters to us is 
because in the nautical almanac, the center-to-center line direction from the 
Earth to the heavenly object is what is tabulated.  The particular cone angle is 
not tabulated, and needs to be calculated and added to the observed altitude to 
make an apples-to-apples comparison to the information in the almanac.  The 
Moon’s parallax can be almost 1 degree, and needs to be accounted for.  The 
parallax can be calculated easily, if we know how far away the heavenly object is 
(which we do).   From the illustration, it should be apparent that the parallax is 
a function of the altitude measurement.  It is a constant number for anyone on 
a particular circle of constant altitude.  The particular parallax angle correction 
corresponding to the particular altitude is known as parallax-in-altitude PA.  The 
maximum parallax possible is when the altitude is equal to zero (moonrise, 
moonset) and is designated as the horizontal parallax HP. 
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Line of Position (LOP) 
 Circles of Position can have radii thousands of miles across, and in the 
small vicinity of our estimated location on the map, the arc looks like a line, 
and so we draw it as a line tangent to the circle of constant altitude.  This line is 
necessarily perpendicular to the azimuth direction of the heavenly object.  One 
could be anywhere (within reason) on that line and measure the same altitude 
to the heavenly object. 
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Navigational Fix 
 To obtain a ‘fix’, a unique latitude and longitude location, we will need 
two heavenly objects to observe.  Reducing the measurements to 2 LOPs, the 
spot where it crosses the 1st line of position is our pin-point location on the 
map, the navigational fix.  This is assuming you are stationary for both 
observations.  If you are underway and moving between observations, then the 
first observation will require a ‘running fix’ correction.  See the illustration of the 
navigational fix to see the two possibilities with overlapping circles of constant 
altitude.  The circles intersect in two places, and the only way to be on both 
circles at the same time is to be on one of the two intersections.  Since we 
know the azimuth directions of the observations, the one true location 
becomes obvious.  Measurement errors of angle and time put a box of 
uncertainty around that pinpoint location, and is called the error box. 
 We could of course measure the same heavenly object twice, but at 
different times of the day to achieve the same end.  This will produce two 
different circles of constant altitude, and where they intersect is the fix, 
providing you stay put.  If you’re not, then running fix corrections can be 
applied here as well.  In fact, this is how navigating with the Sun is done while 
underway with observations in the morning, noon, and afternoon. 
 More often than not, to obtain a reliable fix, the navigator will be using 6 
or more heavenly objects in order to minimize errors.  Stars or planets can be 
mistakenly identified, and if the navigator only has 2 heavenly objects and one 
is a mistake, he/she may find themselves in the middle of New Jersey instead 
of the middle of the Atlantic.  It is improbable that the navigator will 
misidentify the Sun or Moon (one would hope…), but measurement errors still 
need to be minimized.  The two measurements of time and altitude contain 
random errors and systematic errors.  One can also have calculation errors and 
misidentification errors, correction errors, not to mention that you can simply 
read the wrong numbers from the almanac. 
 The random errors in measurement are minimized by taking multiple 
‘shots’ of the same object (~3) at approximately one minute intervals, and 
averaging the results in the hope that the random errors will have averaged out 
to zero.  Systematic errors (constant value errors that are there all the time) 
such as a misaligned sextant, clocks that have drifted off the true time, or 
atmospheric optical effects different from ‘normal’ viewing conditions all need 
to be minimized with proper technique and attention to details, which will be 
discussed later.   Another source of systematic error is your own ‘personal 
error’, your consistent mistaken technique.  Perhaps you are always reading a 
smaller angle, or you are always 1 second slow in the clock reading.  This will 
require a ‘personal correction’. 
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Surfaces of Position (SOP)   
 If you were floating in space, you could measure the angle between the 
Sun and a known star.  There will exist a conical surface with the apex in the 
Sun’s center with the axis of the cone pointing in the star’s direction whereby 
any observer on that conical surface will measure the exact same angle.  This is 
a Surface of Position, where this one measurement tells you only that you are 
somewhere on the surface of this imaginary cone.  Make another measurement 
to a second star, and you get a second cone, which intersects the first one along 
two lines.  Now, the only way to be on both cones at the same time is to be on 
either of those 2 intersection lines.  Make a third measurement between the Sun 
and a planet, and you will create a football shaped Surface of Position, with the 
ends of the football centered on the Sun and the planet (see pg 7).  This third 
SOP intersects one of the two lines at one point.  That is your position in 3-D. 
 

Notice that if the football shape enlarges to 
infinity, the end points locally resemble 
cones.  This is what star cones 1&2 actually 
are.  If you used a third star instead of a 
planet, you would create another pair of 

intersection lines, one of which will be collinear with one of the 1st pair.  It will not get you a 
point.  You need to have a nearby object for the final fix.  The football shape is merely the 
circular arc method revolved about an axis to create a surface.
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Celestial Sphere 
 The celestial sphere is our star map.  It is not a physical sphere like the 
Earth’s surface.  It is a construction of convenience.  The stars do have a 3-
dimensional location in space, but for the purposes of navigation we mostly 
need to know only their direction in the sky.  For stars, their distance is so great 
that their dim light across the solar system is more or less parallel.  With that 
thought, we can construct a transparent sphere which is like a giant bubble 
centered over the Earth’s center where the fixed stars are mapped, painting the 
stars, Sun and our solar system planets on the inside of this sphere like a 
planetarium.  We are on the inside of the bubble looking out.  The celestial 
sphere has an equatorial plane and poles just like the Earth.  In fact, we define 
the celestial poles to be an extension of Earth’s poles, and the two equatorial 
planes are virtually the same.  It just does not spin.  It is fixed in space while the 
Earth rotates inside it. 
 
 In our lifetimes, the stars are more or less fixed in inertial space.  Their 
very slow movement is called proper motion.  However, the apparent location of 
a star changes slightly on the star map due to precession and nutation of the 
Earth’s axis, as well as annual aberration.  That is, the Earth’s spin axis does not 
constantly point in the same direction.  We usually think of the North Pole axis 
always pointing at Polaris, the north star.  It actually wiggles (nutates) around it 
now, but in 10000 years it will point and wiggle about Deneb. However, 5000 
years ago it pointed at Thuban and was used by the ancient Egyptians as the 
pole star!  The Earth wobbles (precesses) in a cone-like shape just like a 
spinning top, cycling once every 25800 years.  We know the cone angle to be 
the same as the 23.44 degree tilt angle of the Earth’s axis, but even that tilt 
angle wiggles (nutates) up and down about 0.15 arcminutes.  There are two 
periods of nutation, the quickest equal to ½ year due to the Sun’s influence, 
and the slowest (but largest) lasting 18.61 years due to the Moon’s precessing 
(wobbling) orbital plane tugging on the earth.   
 
 Aberration is the optical tilting of a star’s apparent position due to the 
relative velocity of the earth vs. the speed of light.  Think of light as a stream of 
particles like rain (photons) speeding along at 299,792 kilometers/s. The Earth 
is traveling at a mean orbital velocity of 29.77 kilometers/s.  When you run in 
the rain, the direction of the rain seems to tilt forward.  The same with light.  
This effect can be as great as 20.5 arcseconds (3600 x arcTan(29.77/299792)). 
 
 The ecliptic plane (Earth’s orbital plane at a given reference date, or epoch) 
mapped onto the celestial sphere is where you will also see the constellations of 
the zodiac mapped. These are the constellations that we see planets traverse 



 21 

across in the night sky, and therefore got special attention from the ancients.  
Instead of describing the location of a star on the celestial sphere map with 
longitude and latitude, it is referred to as Sidereal Hour Angle (SHA) and 
declination (DEC) respectively.  Sidereal Hour Angle is a celestial version of 
west longitude, and declination is a celestial version of latitude.  But this map 
needs a reference, a zero point where its celestial prime meridian and celestial 
equator intersect.  That point just happens to be where the Sun is located on 
the celestial sphere during the spring (vernal) equinox, and is known as the Point 
of Aries.  It is the point of intersection between the mean equatorial plane and 
the ecliptic plane.  Since the Earth’s axis wiggles and wobbles, a reference mean 
location for the equatorial plane is used.  Due to precession of the Earth’s axis, 
that point is now in the zodiacal constellation of Pisces, but we say Aries for 
nostalgia.  That point will travel westward to the right towards Aquarius thru 
the zodiac an average of 50.3 arcseconds per year due to the 25800 year 
precession cycle.  Fortunately, all of these slight variations are accounted for in 
the tables of the nautical and astronomical almanacs.  
 
Local Celestial Sphere 
 This is the celestial sphere as referenced by a local observer at the center 
with the true horizon as the equator.  Zenith is straight up, nadir is straight 
down.  The local meridian circle runs from north to zenith to south.  The 
prime vertical circle runs from east to zenith to west. 
 

Local celestial sphere for a ground observer 
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Greenwich Hour Angle GHA 
 The Greenwich Hour Angle (GHA) of a heavenly object, is the west 
longitude of that object at a given instant in time relative to the Earth’s prime 
meridian.  The Sun’s GHA is nominally zero at noon over Greenwich, but due 
to the slight eccentricity of Earth’s orbit (mean vs. true sun), it can vary up to 4 
degrees.  GHA can refer to any heavenly object that you are using for 
navigation, including the position of the celestial prime meridian, the point of 
Aries. 
 
  Bird’s-eye view above the North Pole 

 
Greenwich Hour Angle of Aries GHAAries (or GHAγ ) 
 The point of Aries is essentially the zero longitude and latitude of the 
celestial sphere where the stars are mapped. The sun, moon, and planets move 
across this map continuously during the year.  SHA and declination relate the 
position of a star in the star map, and GHAAries relates the star map to the 
Earth map. GHAAries is the position of the zero longitude of the star map, 
relative to Greenwich zero longitude, which varies continuously with time 
because of Earth’s rotation.  The relationship for a star is thus: 
 
GHA = GHAAries + SHA   = the Greenwich hour angle of a star.  The 
declination (celestial latitude) of the star needs no ‘translation’ as it remains the 
same in the Earth map as in the star map. 
 
Bird’s-eye view above the north pole 
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Local Hour Angle LHA 
 The Local Hour Angle (LHA) is the west longitude position of a heavenly 
object relative to a local observer’s longitude, not relative to Greenwich.  This 
leads to the relationship: 
 
 LHA = GHA + East Longitude Observer, or 
 LHA = GHA - West Longitude Observer 
If  the calculated value of  LHA > 360, then LHA = LHACALCULATED - 360 
 
Bird’s-eye view above the North Pole 
 

When we are speaking of the Sun, a pre-
meridian passage (negative LHA or  
180<LHA < 360) means that it is still 
morning.  A post-meridian passage (positive 
LHA, or 0<LHA<180) means that it is 
literally after noon. 
At exact local noon, LHA = 0 
 

 
 
Declination DEC 
 As stated earlier, the declination of an object is the celestial version of 
latitude measured on the celestial sphere star-map.  Due to the tilt of the 
Earth’s axis of 23.44 degrees, the sun and planets change their declinations on 
the celestial sphere continuously during the year.  The stars do not.  The Sun’s 
declination follows nearly a perfect sine wave where over the course of 365.25 
days it varies northwards 23.44 degrees and southwards –23.44 degrees.  This is 
a crucial piece of information for the determination of latitude using the Sun. 
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As one can see, maximum declination occurs with the summer solstice which 
has the longest hours of daily sun, the minimum declination with the winter 
solstice having the shortest hours of sun, and the spring and fall equinox 
(“equal night”) having equal day and night times corresponding to zero solar 
declination.  During the equinoxes, the sun will rise directly from the east and 
set directly in the west.  At 40 degrees latitude, there are 6 more hours of 
daylight in the summer as compared to the winter. 
 

 
Solar declination as seen by an observer on the ground varying seasonally 
 
 
Sign Convention 
 We should digress momentarily to establish the proper signs for 
numbers, which make the mathematics consistent and unambiguous. 
For Declination: North is positive (+) South is negative (-) 
For Latitude:  North is positive (+) South is negative (-) 
For Longitude: East is positive (+)  West is negative (-) 
For GHA, it is a positive number between 0 and 360 degrees westward 
For LHA, it is positive westwards (post meridian passage) 0 <LHA < 180, and 
negative eastwards (pre meridian passage) -180 <LHA < 0, or 180 <LHA < 360 
For observed altitude, Ho, above the horizon is positive (+) 
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Concepts in Latitude 
 The simplest example to illustrate how latitude is determined is to 
consider Polaris, the North Star.  Now Polaris is not exactly on the north 
celestial pole, but close enough for our intuition to work here.  If we were 
sitting on Earth’s north pole (avoiding polar bears), we would observe that 
Polaris would be directly overhead, at the zenith point.  Relative to the horizon, 
it would have an altitude of approximately 90 degrees of angle.  Our latitude at 
the North Pole coincidentally is also 90 degrees.  If now instead we were 
sweating somewhere on the equator on a hill in Ecuador at night, we would see 
Polaris just on the northern horizon.  The altitude relative to the horizon would 
be approximately zero.  Coincidentally, the latitude on the equator is zero.  To 
see why this is not really a coincidence, see the illustration to understand the 
geometry involved.  We could say generally that the observed altitude of Polaris 
is equal to the latitude of the observer (actually small corrections need to be 
made since Polaris is slightly off center from the pole).  Also note that the 
declination of Polaris in the celestial sphere is about 90 degrees.  We can 
generalize the matter by taking into account the declination of any particular 
star, as shown in the illustration.  Such a star can be the Sun, and if we know 
the declination for every hour of the year, we can wait until the Sun is at its 
meridian passage (local apparent noon LAN) to make an altitude measurement 
Ho.  The Latitude is then 90 + DEC - Ho. 
 For a star that passes right overhead at the zenith, the star’s declination 
is equal to your latitude.  That makes for good emergency navigation. 
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Concepts in Longitude 
 If we think of a car traveling at 60 mph, in 2 hours it will have traveled 
120 miles (60 x 2).  To determine distance, all we needed was knowledge of the 
speed, and a clock.  For a rotating object, it is the same.  If we know the 
rotational speed, say ¼ revolutions per minute (RPM), and we have a 
stopwatch, in 2 minutes it should have rotated ½ revolution(0.25 x 2), or 180 
degrees(0.25 x 2 x 360 degrees per rev).  Now let’s think of the Earth.  It 
rotates once in 24 hours with respect to the position of the mean Sun in the 
sky.  That’s 360 degrees in 24 hours, or 15 degrees per hour (360/24).  If a 
person on the Earth observes the Sun passing across the local N-S meridian 
line (in other words, local noon), and observes the time to be 15:00 UT, that’s 3 
hours past noon in Greenwich.  You will recall, UT is based on the time in 
Greenwich, zero longitude.  The difference in angle between the observer and 
Greenwich, is 15 deg/hour x 3 hours = 45 degrees of longitude in the 
westward direction.  This is why the chronometer needs to be synchronized 
with Greenwich time, so the observer can determine the difference in angle 
(longitude) with respect to the prime meridian (zero longitude).  This idea was 
noted as early as 1530 by the Flemish professor Gemma Frisius.  Pendulum 
clocks were not suitable for the motion of ships, and it was John Harrison in 
1735 that made the first semi portable clock, with its ‘grasshopper’ escapement 
and twin balance-arm oscillator.  A real cluge of a clock, but it was the start of 
marine chronometers that could take the rocking and rolling of a ship and not 
lose a beat. 
 It is no coincidence that along a great arc on the Earth (such as the 
equator), one minute of arc (1/60 degree) corresponds to one nautical mile (n 
mi) of distance.  One nautical mile is equal to 1.15 statute miles.  The Earth’s 
circumference is then equal to 21600 n mi (1nm per arcmin x 60 arcmin per 
deg x 360 deg per full circle).  The maximum surface speed of rotation for Sun 
observations will occur along the equator at 15 n mi per minute of time (21600 
n mi per day/(24hr per day x 60 min per hr)).  This is also equivalent to ¼ n mi 
per second of time.  It is easy to see now how a time error (either the clock is 
off or the time is read wrong) can put the longitude determination way off.  In 
mid latitudes, a time error of 60 seconds will put the longitude off by 10 n mi. 
 You get the general picture, but actually the true position of the Sun 
does not correspond with clock time as we have already described earlier.  It is 
a little off due to Earth’s elliptical orbit.  
 The upshot of all this explanation is that to know longitude, one needs 
to have a clock set to the time in Greenwich England. 
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Traditional Noon Sighting 
 The noon sighting is an old way of determining latitude and (with 
misgivings) longitude, as the azimuth is unambiguously known as either due 
south or due north.  The method has certain steps to maintain accuracy.  Here, 
the trigonometry disappears and reduces down to mere arithmetic.  The 
technique is to predict approximate local apparent noon (LAN) for your estimated 
longitude from dead reckoning navigation.  Take sightings with your sextant 
several minutes before LAN, and with a sighting every minute, capture the 
highest point in the sky that the Sun traveled plus some sightings after meridian 
passage.  You make corrections to obtain the true altitudes, and plot this 
information as true altitude versus time.  From the plot you can smooth the 
curve and determine the highest point (Honoon) and estimate the time of LAN 
to within several minutes or better of Universal Time (~10-20 n miles of 
longitude error).  Using the nautical almanac, obtain the GHA and declination 
of the Sun (DEC) at the time of LAN.  Remember the sign convention and 
apply it.  We will now make a distinction regarding the direction of meridian 
passage, whether the sun peaked in the south or in the north, by introducing a 
new variable Signnoon.  In keeping with the consistent sign convention, when 
the meridian passage is northwards such as commonly occurs in S. latitudes, 
the value of Signnoon is +1.  When the meridian passage is southwards such as 
commonly occurs in N. latitudes, the value of Signnoon is -1.  Thus: 
 
Latitude =  Signnoon x Honoon + DEC + 90 
 
If this calculated latitude is greater than 90 degrees, then subtract 180 from it. 
If  Signnoon x Honoon + DEC is equal to zero, then you are exactly on either 
the north or south pole.  If you don’t know which pole you’re on then you 
should have stayed home. 
 
This equation works whether you are in the northern or southern hemispheres, 
in or out of the tropics.  Just follow the sign convention, and it will all come out fine. 
 
For longitude, the local hour angle LHA is zero, and so, determine the sun’s 
GHA at the instant of LAN using the almanac: 
Longitude = - GHA  if GHA is less than 180 
Longitude =  360 – GHA  if GHA is greater than 180 
 
Remember, if your chronometer is inaccurate then the longitude will be off 
considerably since you are in essence comparing the local time with time in 
Greenwich.  It will be off considerably anyway due to the plotting estimates.   
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3-Measurement Noon Sighting: Double Altitudes 
 
There is an antiquated technique to determine latitude and longitude with a 
noon sighting using 3 measurements.  15 minutes before LAN, you can shoot 
the sun for a reference point of altitude and time.  Record this as your 
measurement #1.  Then keep track of the sun with the sextant and when it 
reaches the maximum altitude, record this as your measurement #2.  Finally, 
set the sextant to the altitude setting that you had in measurement #1, and 
observe the sun.  The moment the altitude matches the pre-positioned setting, 
record the time (UTC).  Noon will be at the average between time 
measurements #1 and #3.  The latitude will be derived from measurement #2.   
 
From the almanac, determine the sun’s declination DEC.  For southwards 
meridian passage, Signnoon = +1, and a northerly passage = -1. 
 
Latitude =  Signnoon x Ho#2 + DEC + 90 (remember the sign for DEC) 
If this calculated latitude is greater than 90 degrees, then subtract 180 from it. 
 
Time of LAN = (Time #1 + Time #2) *0.5 
 
For longitude, the local hour angle LHA is zero, and so determine the sun’s 
GHA at the instant of LAN using the almanac: 
 
Longitude = - GHA   if GHA is less than 180 
Longitude =  360 – GHA   if GHA is greater than 180 
 
If for example T#1 = 19:27:31, and T#3 = 19:48:43, then the difference 
between them is 21 min and 12 sec.  Half that is 0:10:36 difference, so add that 
to T#1 and you get 19:37:67 which is 19:38:07 as LAN. 
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Plane Trigonometry 
The simplest notion of ‘trig’ is the relationship of the sides and angles in a 
triangle.  All you have to know are these three basic relationships: 

sine (α) = Lo / H  shorthand is sin(α) 
cosine (α) = La / H  shorthand is cos(α) 
tangent (α) = Lo / La shorthand is tan(α) 
 
The values of these trigonometric functions can 
be expressed as an infinite series, which your 
calculator will approximate by truncating the 
series after evaluating only a few terms. 
 
 

Useful identities: 
sin(α) = cos(α -90˚) 
cos(α) = - sin(α -90˚) 
 
Spherical Trigonometry 

Three Great Circles on a sphere will 
intersect to form three solid corner angles 
a, b, c, and three surface angles A, B, C.  
Every intersecting pair of Great Circles is 
the same as having two intersecting planes.  
The angles between the intersecting planes 
are the same as the surface angles on the 
surface of the sphere.  Relationships 
between the corner angles and surface 
angles have been worked out over the 
centuries, with the law of sines and the law 
of cosines being the most relevant to 
navigation. 

 
Law of Sines:       sin(a)/sin(A) = sin(b)/sin(B) = sin(c)/sin(C)  
 
Law of Cosines:   cos(a) = cos(b) • cos(c) + sin(b) • sin(c) • cos(A) 
 
Law of Cosines in terms of co-angles: 
   sin(90-a) = sin(90-b) • sin(90-c) + cos(90-b) • cos(90-c) • cos(A) 
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The Navigational Triangle 
 The navigational triangle applies spherical trigonometry, in that the 
corner angles a, b, c are related to altitude, latitude, and declination angles, and 
the surface angles are related to azimuth and LHA angles. 

 
 
 
 
 
 
 
 
 
 
 

 
 
The corner angles corresponding to the arc sides are modifications of the 
altitude, latitude and declinations.  As can be seen in the drawing, they are 90˚ –
the angle, known as co-angles: 
Co-altitude   = 90˚ – H 
Co-declination  = 90˚ – DEC 
Co-latitude   = 90˚ - LAT 
Most authorities will examine 4 cases concerning North or South declination 
and latitude.  But if a consistent sign convention is used, we need only concern 
ourselves with the one picture.
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Chapter Four 
 

Calculations for Line of Position 
 
 The calculated altitude is a way of predicting the altitude of a heavenly 
object by first assuming a latitude and longitude for a hypothetical observer and 
working out the problem backwards.  The math becomes direct and 
unambiguous when done in this manner.  The obvious choice of assumed 
latitude and longitude is the estimated position by dead reckoning.  Dead 
reckoning is the method of advancing from a last known position by knowing 
the direction you headed in, how fast you were going, and how long you went.  
You will eventually compare this calculated altitude to a measured altitude, and 
so the calculated altitude must correspond to the same time as the measured 
altitude.  This is important to extract the proper values of GHA and declination 
from the nautical almanac.  You must be talking about the same instant in time 
for a correct comparison.  Remembering to use the sign convention, the law of 
cosines gives us this relationship for the calculated altitude Hc: 
 
Hc = arcSin[ Sin(DEC) • Sin(LatA)  +  Cos(LatA) • Cos(DEC) • Cos(LHA) ] 
 
Where LatA is the assumed latitude, LonA is the assumed longitude 
 and the calculated local hour angle   LHA =  GHA + LonA 
If  LHA is greater than 360, then subtract 360 from the calculated LHA. 
DEC is of course the declination of the heavenly object. 
 
The uncorrected azimuth angle Zo of a heavenly object can also be calculated 
as thus: 
 
Zo = arcCos[{Sin(DEC) – Sin(LatA) • Sin(Hc)}/{Cos(LatA) • Cos(Hc)}] 
 
 
Corrected azimuth angle Z  (not used in any of the equations here) 
If N. latitudes, then Z = Zo        If S. latitudes, then Z = 180 – Zo 
 
True Azimuth Angle from True North Zn 
If LHA is pre-meridian passage (-, or 180<LHA < 360), Zn = Zo 
If LHA is post-meridian passage (0<LHA < 180), Zn = 360 – Zo  
Post meridian check can also be established if:  Sin(LHA) > 0 
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By using the sign convention, we only have two cases to examine to obtain the 
true azimuth angle.  All texts on celestial that I know of will list 4 cases due to 
the inconsistently applied signs on declination and latitude.  Classical same 
name (N-N, S-S) or opposite name (N-S, S-N) rules do not apply here. 
 
Line of Position by the Marcq Saint-Hilaire Intercept Method 
 This clever technique determines the true line of position from an 
assumed line of position.  Let’s say you measured the altitude of the Sun at a given 
moment in time.  You look up the GHA and declination of the Sun in the 
nautical almanac corresponding to the time of your altitude measurement.  
From an assumed position of latitude and longitude, you calculate the altitude 
and azimuth of the Sun according to the preceding section and arrive at Hc 
and Zn.  On your map, you draw a line thru the pin-point assumed latitude and 
longitude, angled perpendicular to the azimuth angle.  This is your assumed line 
of position.  The true line of position will be offset from this line either 
towards the sun or away from it after comparing it to the actual observed altitude 
Ho (the raw sextant measurement is Hs, and needs all the appropriate 
corrections applied to make it an ‘observed altitude’). 
 
The offset distance DOFFSET to determine the true line of position is equal to: 
 
DOFFSET = 60 • (Ho - Hc), altitudes Ho and Hc in decimal degrees, or  
DOFFSET = (Ho - Hc), altitudes in minutes of arc. DOFFSET in nautical miles for 
both cases.  
 
 If DOFFSET is positive, then parallel offset your assumed line of position 
in the azimuth direction towards the heavenly object. If negative, then draw it 
away from the heavenly object.  If the offset is greater than 25 nautical miles, 
you may want to assume a different longitude and latitude to minimize errors.   
 
 By calculating an altitude, you have created one circle of constant 
altitude about the geographical position, knowing that the actual circle of 
constant altitude is concentric to the calculated one.  The difference in 
observed altitude and calculated altitude informs you how much smaller or 
larger the actual circle is.  Offsetting along the radial azimuth line, the true 
circle will cross the azimuth line at the intercept point.   
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Line of Position by the Sumner Line Method 
 
 If we measure the altitude of a heavenly object and make all the proper 
corrections, this reduces to the observed altitude Ho.  As we should know by 
now, there is a circle surrounding the geographical position of the heavenly 
object where all observed altitudes have the same value Ho.  We could 
practically draw the entire circle on the map, but why bother?  What if instead, 
we draw a small arc in the vicinity of our dead reckoning position.  In fact, why 
an arc at all, since at the map scale that interest us, a straight line will do just 
fine.  All we need do is to rearrange the equation of calculated altitude, to make 
it the observed altitude instead and to solve the equation for LHA, which will 
give us longitude.  The procedure is to input an assumed latitude, the GHA and 
declination for the time of observation, and out pops a longitude.  Mark 
longitude and latitude on the map.  Now input a slightly different latitude, and 
out pops a slightly different longitude.  Mark the map, connect the dots and 
you have a Sumner Line.  These are two points on the circle in the vicinity of 
your dead reckoning position.  Or were they?  Was the answer for longitude 
unreasonably off?  Notice that for every latitude line that crosses the circle, 
there are 2 solutions for longitude, an east and west solution.  In the arcCos 
function, the answer can be the angle A or the angle -A.  Check both just to 
make sure. 
 
East side of the circle when the object is westwards (post meridian): 
LonC = arcCos[{ Sin(Ho) - Sin(DEC) • Sin(LatA)}/{Cos(LatA) • Cos(DEC)}] – GHA 
 
West side of the circle when the object is eastwards (pre meridian): 
LonC = -arcCos[{ Sin(Ho) - Sin(DEC) • Sin(LatA)}/{Cos(LatA) • Cos(DEC)}] – GHA 
 
Where LatA is the assumed latitude, LonC is the calculated longitude 
 DEC is of course the declination of the heavenly object. 
 
The two values for assumed latitude could be the dead reckoning latitude LatDR 
+ 0.1 and – 0.1 degree. 
 
The advantage to this method is that the LOP comes out directly without 
offsets.  There is no azimuth calculation, just two calculations with the same 
equation having slightly differing latitude arguments.  Also, the fact that only 
the assumed latitude is required means no estimated position of the longitude is 
needed at all.  This method turns into an E-W LOP when near the meridian 
passage.  It’s as if you were doing a ‘noon shot’ when under these 
circumstances, so just use the DR latitude and draw an E-W line. 
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History of the Sumner Line 
 
The Sumner line of position takes its name from Capt. Thomas H. Sumner, an 
American ship-master, who discovered the technique serendipitously and 
published it.  This is the incident as described in his book, which lead to its 
discovery: 
Having sailed from Charleston, S. C., November 25th, 1837, bound for Greenock, a series 
of heavy gales from the westward promised a quick passage; after passing the Azors the wind 
prevailed from the southward, with thick weather; after passing longitude 21 W. no 
observation was had until near the land, but soundings were had not far, as was supposed 
from the bank. The weather was now more boisterous and very thick, and the wind still 
southerly; arriving about midnight, December 17th within 40 miles, by dead reckoning, of 
Tuskar light, the wind hauled SE. true, making the Irish coast a lee shore; the ship was then 
kept close to the wind and several tacks made to preserve her position as nearly as possible 
until daylight, when, nothing being in sight, she was kept on ENE. under short sail with 
heavy gales. At about 10 a. m. an altitude of the sun was observed and the chronometer time 
noted; but, having run so far without observation, it was plain the latitude by dead reckoning 
was liable to error and could not be entirely relied upon.  
The longitude by chronometer was determined, using this uncertain latitude, and it was found 
to be 15' E. of the position by dead reckoning; a second latitude was then assumed 10' north 
of that by dead reckoning, and toward the danger, giving a position 27 miles ENE. of the 
former position; a third latitude was assumed 10' farther north, and still toward the danger, 
giving a third position ENE. of the second 27 miles. Upon plotting these three positions on 
the chart, they were seen to be in a straight line, and this line passed through Smalls light.  
It then at once appeared that the observed altitude must have happened at all of the three 
points and at Smalls light and at the ship at the same instant.  

Then followed the conclusion that, although the absolute position of the ship was uncertain, 
she must be somewhere on that line. The ship was kept on the course ENE. and in less than 
an hour Smalls light was made, bearing ENE. 1/2E. and close aboard. 
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Chapter 5 Measuring Altitude with the Sextant 
 
 The sextant is a wonderfully clever precision optical instrument.  It 
reflects the image of the Sun (or anything, really) twice with two flat mirrors in 
order to combine it with a straight-thru view, allowing you to see the horizon 
and heavenly object simultaneously in the same pupil image.  This allows for a 
‘shake-free’ view, as the horizon and Sun move together in the combined 
image.  The straight-thru view is accomplished with the second mirror (horizon 
mirror), which is really a half mirror, silvered on the right and clear on the left.  
You see the horizon unchanged on the left, and the twice-reflected sun on the 
right if you use a ‘traditional’ mirror as opposed to a ‘whole horizon’ mirror.  With 
a whole horizon mirror, both horizon and Sun will be in the entire view.  It 
does this by partial silvering of the entire horizon mirror like some sunglasses 
are, reflecting some light and transmitting the rest.  This makes the easy shots 
easier, but the more difficult shots with poor illumination or star shots more 
difficult.  Even with the traditional mirror, curiously, you will see a whole image 
of the sun in the pupil that you can move to the right or left by rocking the 
sextant side to side.  The glass surface itself is reflective.  When it is at its lowest 
point, you are correctly holding the sextant and can take a reading.  The 
horizon however, will only be on the left side of the image.  In order to 
determine the altitude of the Sun, you change the angle of the first mirror (index 
mirror) with the index arm until the Sun is close to the horizon in the pupil 
image.  Now turn the precision index drum (knob) until the lower limb of the 
Sun just kisses the horizon.  Rock it back and forth to make sure you have the 
lowest reading.  In order not to burn your eye out (that would be stupid…), 
there are filters (shades) that can be rotated over the image path of the index 
mirror.  Likewise, there are other filters that cover the horizon mirror to 
remove the glare and increase the contrast between horizon and sky. 
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Mirror Alignments 
Even an expensive precision instrument will give you large errors (although 
consistent systematic error) unless it is adjusted and calibrated.  Before any 
round of measurements are taken, you should get into the habit of calibrating 
and if necessary adjusting the mirrors to minimize the errors.   
 
The first check is to see if the index mirror is perpendicular to the sextant’s arc.  
Known as Perpendicularity Alignment, it is checked in a round-about manner by 
finding the image of the arc in the index mirror when viewed externally at a low 
angle.  Set the arc to about 45 degrees.  The reflected arc in the index mirror 
should be in line with the actual arc.  This can be tricky, as it only works if the 
mirrored surface is exactly along the pivot axis of the index arm.  Since most 
mirrors are secondary surface mirrors (the silvering is on the back of the glass), 
you need to compare the position of the rear of the glass to the pivot axis first 
to see if this technique will work.  First surface mirrors (the silvering is on the 
front of the glass) seem to be an upgrade, but the sextant’s manufacturer may 
not have necessarily redesigned the mirror-holding mount.  This positions the 
index mirror reflecting surface 2 to 3 mm or so in front of the pivot axis.  In 
that case, the reflected image of the arc should be slightly below the viewed 
actual arc.  There are precision-machined cylinders about an inch high that you 
can place on the arc and view their reflections.  The reflections should be 
parallel to the actual cylinders.  If not, then turn the set screw behind the index 
mirror to bring it into perpendicular alignment. 
 
The next alignment is Side Error Alignment of the horizon mirror.  This can be 
done two ways after setting the arc to the zero angle point such that you see the 
same object on the left and right in the pupil image.  First, at sea in the daytime, 
point the sextant at the horizon.  You will see the horizon on the left and the 
reflected horizon on the right.  Adjust the index drum until they are in perfect 
alignment while holding the sextant upright.  Now roll (tilt) the sextant side to 
side.  Is the horizon and reflected image still line-to-line?  If not, then side error 
exists.  This is corrected with adjustments to the set screw that is 
perpendicularly away from the plane of the arc on the horizon mirror.  Second 
method is to wait until nighttime, where a point source that is nearly infinitely 
far away presents itself (yes, I mean a star).  Same procedure as before except 
that you need not roll the sextant.  What you will see is two points of light.  
The horizontal separation is the side error, and the vertical separation is the index 
error.  Adjust the drum knob to negate the index error effect until the star and 
its reflection are vertically line-to-line but still separated horizontally.  Make 
adjustments to the side-error set screw until the points of light converge to a 
single image point. 
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You could stop here at this point, reading the drum to determine the index 
error IE (Note: index correction IC = - IE).  Or you could continue to zero out 
the index error as well with a last series of adjustments.  In which case, for the 
Index Error Alignment, set the arc to zero (index arm and drum to the zero angle 
position).  You will notice that the star image now has two points separated 
vertically.  Adjusting the remaining set screw on the horizon mirror (which is 
near the top of the mirror), you can eliminate the vertical separation.  
Unfortunately this last set screw does not only change the vertical separation, 
but it slightly affects the horizontal separation as well.  Now you need to play 
around with both set screws until you zero-in the two images simultaneously.  
With a little practice these procedures will be easy and routine.  A word of 
caution: the little wrench used to adjust the set screws maybe very difficult to 
replace if you should drop it overboard.  Making a little hand lanyard for the 
wrench will preserve it.  Maybe… 
 
Note:  I have also used high altitude jet aircraft, their contrails, and even cloud 
edges to adjust the mirrors.  If you have dark enough horizon shades, you can 
even use the sun’s disk to adjust the mirrors. 
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Sighting Techniques 
 
Bringing the object down 
Finding the horizon is much easier than finding the correct heavenly object in 
the finder scope.  So, the best technique is to first set the index arm to zero 
degrees and sight the object by pointing straight at it.  Then keeping it in view, 
‘lower’ it down to the horizon by increasing the angle on the index arm until 
the horizon is in sight.  Careful with the sun, as you don’t want to see it 
unfiltered thru the horizon glass; keep the sun on the right hand side of the 
mirror using the darkest shade over the index mirror. 
 
Rocking for the lowest position 
Rocking the sextant from side to side will help you determine when the sextant 
is being pointed in the right direction and held proper, as the object will find its 
lowest point.  This will give the true sextant altitude Hs. 
 
Letting her rise, letting her set 
Often it is easier to set the sextant ‘ahead’ of where the heavenly object is 
going, and to simply let her rise or set as the case may be to the horizon.  At 
that point you mark the time.  That way you can be rocking the sextant to get 
the true angle without also fiddling with the index drum.  This leaves a hand 
free, sort of, to hold the chronometer such that at the time of mark, you just 
have to glance to the side a little to see the time. 
 
Upper limb, lower limb 
With an object such as the Sun or Moon, you can choose which limb to use, 
the lower limb or upper limb.  Unless the Sun is partially obscured by clouds, 
the lower limb is generally used.  Depending on the phase of the moon, either 
lower limb or upper limb is used. 
 



 43 

Brief History of Marine Navigational Instruments 
 
The earliest instrument was the astrolabe, constructed in the Middle East during 
the 9th century AD.  It was a mechanical rotating slide rule with a pointer to 
determine the altitude of stars against a protractor.  Contemporary was a very 
simple instrument, the quadrant.  It was a quarter of a circle protractor with a 
plumb-bob and a pair of peep sights to line up with Polaris.  The first real 
ancestor to the modern sextant was the cross staff, described in 1342.  A 
perpendicular sliding cross piece over a straight frame allowed one to line up 
two objects and determine the angle.  Of course one had to look at both 
objects simultaneously by dithering the eyeball back and forth – a bit of a 
problem.  Also one had to look into the blinding sun.  Since a cross staff 
looked like a crossbow, one was said to be ‘shooting the sun’, an expression 
still used today.  The Davis backstaff  in 1594 was an ingenious device where sun 
shots were taken with your back to the sun, using the sun’s shadow over a vane 
to cast a sharp edge.   The navigator would line up the horizon opposite the 
sun azimuth with a pair of peep holes, and rotated a shadow vane on an arc 
until the shadow edge lined up on the forward peep hole.  This limited one to 
only sun shots to determine latitude.  In the 1600’s a French soldier-
mathematician by the name of Vernier invented the vernier scale, whereby one 
could easily interpolate between degree scales to a 1/10 or 1/20 between the 
engraved lines on the protractor scale.  The search for determining longitude 
created bizarre proposals, but it was recognized that determining the time was 
the answer, and so one needed an accurate clock.  A clock could be mechanical, 
or astronomical.  The Moon is about ½ degree of arc across its face, and moves 
across the celestial sphere at the rate of about one lunar diameter every hour.  
Therefore its arc distance to another star could be used as a sort of 
astronomical clock.  Tables to do this were first published in 1764.  The 
calculations and corrections are indeed frightening, and this method of 
determining time to within several minutes of Greenwich Mean Time is called 
doing Lunars, and those who practice it are Lunarians.  Undoubtedly if you used 
this method too often you would have been branded a Lunatic.  Fortunately in 
1735 John Harrison invented the first marine chronometer, having some wood 
elements and weighing 125 lbs.  He worked on it for 40 years!  The Hadley 
Octant  in 1731 was the first to use the double reflecting principle as described 
by Isaac Newton a century before.  It could measure across 90 degrees of arc, 
even though it was only physically 45 degrees arc, an 1/8 of a circle.  The 
sextant with it’s ability to record angles of 120 degrees came about for use in 
doing lunars, and so was a contemporary of the octant.  By 1780, refinements 
such as tangential screws, vernier scales, and shades glasses, fixed the design of 
sextants and octants for the next 150 years.   
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VARIOUS ANTIQUE INSTRUMENTS  
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 Chapter 6   Corrections to Measurements 
 
There are numerous corrections to be made with the as-measured altitude Hs 
that you read off of the sextant’s arc degree scale and arc minute drum and 
vernier.  Your zero point on the scale could be off, the same as the bathroom 
scale when you notice that it says you weigh 3 lbs even before you get on it.  
This is known as index error, and the correction is IC.  For our example of the 
bathroom scale, IC = -3.  The other major corrections are parallax, semi-
diameter, refraction, and dip, listed from the largest effect to the smallest.  
Lunar parallax can be at most a degree, semi-diameter ¼ degree, refraction and 
dip are on the order of 1/20th degree. 
 

 
 
 
The Hs in the figure does not account for the index error, IC. 
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The sextant basically has an index correction IC and an instrument correction 
I.  The instrument error is due to manufacturing inaccuracies and distortions, 
and should be listed on a calibration sheet from the manufacturer.  Generally 
it’s negligible.  Index error is due to the angular misalignment of the index 
mirror, with respect to the zero point on the scale.  The correction IC is 
negative when the zero is “on the scale”, and positive when “off the scale”.  By 
adjusting the drum knob as described on pages 39 and 40 to negate the optical 
index error, one can see if the zero is on or off the scale. 
 
Dip Correction 
Dip is the angle of the visual horizon, dipping below the true horizon due to 
your eye height above it.  This is also tabulated in the nautical almanac.  An 
approximate equation for dip correction that incorporates a standard horizon 
refraction is thus: 
 
Corr DIP =  - 0.0293 • SquareRoot(h)            Decimal Degrees 
Where h is the eye height above the water, meters. Corr DIP is always negative. 
 
Altitude Corrections 
Let us first define the apparent altitude, Ha = Hs + IC + Corr DIP 
Ha is the altitude without corrections for refraction, semi-diameter, or parallax.    
The atmosphere bends (refracts) light in a predictable way.  These corrections 
are tabulated on the 1st page of the nautical almanac based on the apparent 
altitude Ha.  The corrections vary for different seasons, and whether you are 
using the lower or upper limb of the Sun for your observations.  Since 
measurements are made to the edge (limb) and not the center of the Sun, the 
angle of the Sun’s visual radius (semi-diameter) must be accounted for.  The 
table also lists slight deviations from the nominal for listed planets. There are 
special lunar correction tables at the end of the almanac, which include the 
effects of lunar semi-diameter, parallax and refraction.  The variable name for 
all of these combined altitude error corrections, lunar, solar or otherwise, is 
Corr ALT, sometimes called the ‘Main Correction’. 
The true observed altitude is a matter of adding up all the corrections: 
 
 Ho = Ha + Corr ALT 
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Tables of  Altitude Correction, averaged values, summer/winter 
 

Altitude correction for sun and stars 
CorrALT 

Ha 
Sun 
LL 

Sun 
UL Stars 

10 
deg +11' -21' -5' 
13 
deg +12' -20' -4' 
15 
deg +12.5' -19.5' -3.5' 
17 
deg +13' -19' -3' 
20 
deg +13.5' -18.5' -2.5' 
24 
deg +14' -18' -2' 
31 
deg +14.5' -17.5' -1.5' 

41deg +15' -17' -1' 
59 
deg +15.5' -16.5' -0.5' 
85 
deg +16' -16' 0 

Dip Correction 
Height CorrDIP 
0.7m -1.5' 
1.3m -2' 
2.0m -2.5' 
2.9m -3' 
3.9m -3.5' 
5.1m -4' 
6.4m -4.5' 
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Refinements 
Corrections for observations can be calculated instead of using tables, and 
refinements can be employed for non-standard conditions. 
 
Start with the apparent altitude Ha: 
Ha = Hs +IC + Corr DIP       (assume instrument correction I ~0) 
 
The horizontal parallax for the Moon is given in the nautical almanac tables as 
the variable HP in minutes of arc, and you must convert it to decimal degrees.   
HP for the Sun = 0.0024 degrees, but this is rarely included as being so small a 
value.  For Venus, the HP is hidden in the altitude correction tables, listed as 
‘Additional Corrn ’.  Use the largest number at zero altitude to = HPVenus.  To 
determine the parallax-in-altitude PA, use this equation: 
 
PA = HP • Cos(Ha) • (1 –(Sin2(Lat))/298.25) includes earth oblateness 
 
The semi-diameter of the Sun SD is given at the bottom of the page of the 
tables in the nautical almanac in minutes of arc, and you must convert it to 
decimal degrees.  So is the semi-diameter daily average of the Moon, but you 
can calculate one based on the hourly value of HP: 
The semi-diameter of the Moon: SD = 0.2724 • HP • (1 + Sin(Ha)/230) 
The terms in the parenthesis are “augmentation”, meaning the observer is a 
very little closer to the moon with greater altitude angle.  This is a small term. 
 
Atmospheric refraction is standardized to surface conditions of 10 deg C and 
1010mb pressure.  This standard refraction correction Ro is thus: 
Ro = - 0.0167 / Tan[Ha + 7.31/(Ha+4.4)] degrees 
 
The correction for non-standard atmospheric conditions is referred to as f: 
f = 0.28 • Pressuremb / (TemperatureDEG C + 273) 
The final refraction correction  R is thus: 
R = Ro • f    This number is always negative. 
 
If the lower limb were observed, then signlimb = +1  
If the upper limb were observed, then signlimb = -1 
 
Observed altitude with refinements:  
Ho = Ha + R + PA + SD • signlimb 
 
Here we see that the altitude correction Corr ALT = R + PA + SD • signlimb  
Note:  Convert arcminutes to decimal degrees for consistent calculations
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Artificial horizon 
 
A fun way of practicing sighting the Sun while on land is to use an artificial 
horizon.  This is simply a pan of water or old motor oil that you place down on 
the ground in view of the Sun.  Since the liquid will be perfectly parallel with 
the true horizon (no dip corrections here), it can be used as a reflecting plane.  
In essence you point the sextant to the pan of liquid where you see the 
reflection of the Sun.  Move the index arm until you bring the real Sun into the 
pupil image with the index mirror.  With the micrometer drum bring both 
images together (no semi-diameter corrections either) and take your reading.  
This gives a reading nearly twice the real altitude.  Undoubtedly you will need 
to position extra filters over the horizon mirror to darken the Sun’s image, as 
normally you would be looking at a horizon.  Correct the reading by taking the 
apparent altitude Ha and divide by two, then add the refraction correction: 
 
Ha = (Hs + IC)/2       no dip correction 
Ho = Ha + R               no semi-diameter correction 
 
The wind is very bothersome, as it will ripple the water’s surface and therefore 
the reflected image.  Protective wind guards around the pan work somewhat, 
but generally you may have to wait minutes for a perfect calm.  What works 
best is mineral oil in a protected pan set up on a tripod so that you can get 
right up to it.  The ripples dampen out almost immediately. 
 
To be very accurate, you can let the sun touch limb-to-limb.  If pre meridian 
(morning) then let the bottom image rise onto the reflected image, measure the 
time, and SUBTRACT a semidiameter (UL): Ho = Ha + R - SD 
If post meridian (afternoon), let the top image set onto the reflected image, 
measure the time, and ADD a semidiameter (LL): Ho = Ha + R + SD 
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Chapter 7  Reading the Nautical Almanac 
 
The nautical almanac has detailed explanations in the back regarding how to 
read the tabular data and how to use the interpolation tables (increments and 
corrections).  The data is tabulated for each hour on the dot for every day of 
the year, and you must interpolate for the minutes and seconds between hours. 
Every left hand page in the almanac is similar to all other left hand pages, and 
the same for all right hand pages.  Three days of data are presented for every 
left and right hand page pairs.  The left page contains tabular data of GHA and 
declination for Aries (declination = 0), Venus, Mars, Jupiter, Saturn and 57 
selected stars.  The right page has similar data for the Sun and Moon.  It also 
provides the Local Mean Time (LMT) for the events of sunrise, sunset, 
moonrise, and moonset at the prime meridian.  For your particular locality, you 
can express the event time in UT with the following equation: 
 
EventTimeLOCAL = LMT – Longitude/15.   Hours UT at your longitude.  
Remember the sign convention, West -, East +. 
 
Interpolation tables, v and d corrections 
Probably the most confusing part of the tables is interpolation for times between 
hourly-tabulated data, and how to properly apply the mysterious v and d 
corrections.  The interpolation tables (‘increments and corrections’) are based 
on nominal rates of change of GHA for the motions of the Sun and planets, 
Moon, and Aries. This way, only one set of interpolation tables is required, with 
variances to the rates compensated with the v and d values.  These are hourly 
variances, and their applicable fraction (the correction Corr V and Corr d) is 
given in the interpolation tables for the minute of the hour.  The v number 
refers to variances in the nominal GHA rate.  There is no nominal rate for 
changes in declination, so d is the direct hourly rate of change of declination.  
For GHA, the interpolation tables will tabulate increments (Corr GHA) down to 
the second of each minute.  The v and d correction is interpolated only for 
every minute.  Take the hourly data in the tables, GHA, add the interpolated 
increment for the minutes and seconds, and finally add the interpolated v 
correction.  Similarly for declination, take the tabulated hourly value Dec and 
add the interpolated d correction.  Our sign convention imposes that a south 
declination is negative, and a north declination is positive.  A word of caution, 
the value of d (with our sign convention) may be positive or negative.  If the 
tabulated hourly data for declination is advancing northwards (less southwards), 
then the sign is positive. We could have a negative declination (south), but have 
a positive d if declination is becoming less southwards.  Along the same line, we 



 51 

could have a positive declination (north) but a negative  d if the declination is 
heading south (less northwards). 
The final values at the particular hour, minute, and second are thus: 
GHA = GHAhour + Corr GHA + Corr V 
DEC = DEC hour + Corr d  
Where GHAhour and DEC hour  are the table values in the almanac for the hour. 
 
After all the interpolations and corrections are performed, convert the angles to 
decimal degrees and make sure the sign convention was applied consistently to 
the declination value.  
 
Note:  In the nautical almanac, liberal use is made of the correction factor 
Corrn.  It seems to appear everywhere and applied to everything.  The n is 
actually a variable name for any of the parameters that require ‘correction’.  
Notably, Corr DIP, Corr ALT, Corr GHA, Corr V, and Corr d. 
 
 
Since we like to use our calculators, instead of using the ‘increments and 
corrections’ table (it’s actually very easy) we can interpolate for ourselves in the 
following manner.  Lets say we shot an observation at Universal Time H hours, 
M minutes, and S seconds (H:M:S).  The nautical almanac tables for the 
particular day gave us a GHA in degrees and arcminutes at the UT hour.  We 
convert it to decimal degrees and call it GHAhour.  We do the same for the 
declination and call it DEC hour.  Note the hourly variance v and declination rate 
d in arcminutes per hour.  We can also define the hour fraction, Δt, which are 
the minutes and seconds in decimal form: Δt = (M/60) + (S/3600).  Now, 
the correct interpolated value for our specific time of observation is thus: 
GHA = GHAhour + {Rate + (v/60)} x Δt      decimal degrees 
 
Where             Rate = 15.00000   (degrees/hour) for Sun or planets 
                       Rate = 14.31667   (degrees/hour) for Moon 
                       Rate = 15.04107   (degrees/hour) for Aries 
 
In a similar line, declination is interpolated thus: 
DEC = DEC hour + (d/60) x Δt       (DEC hour and d with the proper sign) 
 
Carry out all calculations to 4 decimal places, and make sure the sign 
convention was applied correctly (carpenter’s rule: measure twice, cut once).  
 
Visit an on-line Nautical Almanac at: http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa  
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Chapter 8  Sight Reduction 
 
The process of taking the raw observational data and turning the information 
into a Line Of Position (LOP) is called sight reduction.  Even though the 
equations and methods have been described all through out the book, what is 
needed here most is organization to minimize the calculation random errors. 
 
History 
Trigonometric tables were first published by Regiomontanus in the mid 1400's, 
followed by the early logarithm tables of Edmund Gunter in the late 1600’s, 
which allowed multiplication to be treated as addition problems.  This is the 
basis of the slide rule (does anybody remember those??).  French almanacs 
were published in the late 1600’s where the original zero longitude ‘rose line’ 
ran thru Paris.  The English almanacs were published later in the 1700’s.  The 
altitude-difference method of determining a line of position introduced the age 
of improved navigation, described in 1875 by Commander Adolphe-Laurent- 
Anatole Marcq de Blonde de Saint-Hilaire, of the French Navy. This ‘Marcq 
Saint-Hilaire’ method remains the basis of almost all celestial navigation used 
today.  But the Sumner line method may be considered equally easy, 2 
computations for the Saint-Hilaire method, and 2 for the Sumner line method.  
Computed altitude and azimuth angle have been calculated by means of the log 
sine, cosine, and haversine ( ½ [1-cos]  ), and natural haversine tables.  
Sight reduction was greatly simplified early in the 1900’s by the coming of the 
various short-method tables - such as the Weems Line of Position Book, 
Dreisonstok's Hydrographic Office method H.O. 208 (1928), and Ageton's H.O. 
211 (1931). Almost all calculations were eliminated when the inspection tables, 
H.O. 214 (1936), H.O. 229, and H.O. 249 were published, which tabulated 
zillions of pre-computed solutions to the navigational triangle for all 
combinations where LHA and latitude are whole numbers.  The last two 
methods, H.O. 229 and H.O. 249 developed in the mid 1940’s and early 1950’s 
remain the principle tabular method used today.  The simplest tabular method 
of all is to use a shorthand version of Ageton’s tables known as the S-tables, 
which are only 9 pages long.  No whole number assumptions are required, and 
the answers are the same as a navigational calculator.  You must do some 
minor addition, though, and the tables are a bit of a maze. 
The following page is an example of a sight-reduction form using the 
“calculator method” instead of the typical HO 229, 249 tabular methods.
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 SIGHT REDUCTION BY CALCULATOR, INTERCEPT METHOD 
 
Sun / Moon / Planet / Star     LL / UL   UT  Date _____m _____d______yr 
Time of observation  UTC = _____h _____m _____s 
DR position (1)   Lat = ____________    Lon = _____________ 
Eye height     Heye ______meters 
Index correction   IC = ______ arcmin 
Sextant measured altitude Hs = __________deg  _________arcmin 
 
Dip correction from the corrections table:  CorrDIP = ___________    
Apparent altitude Ha =    Hs + IC + CorrDIP      Ha  = ____________ 
Altitude correction from the corrections table:  CorrALT = ___________ 
True altitude Ho = Ha  + CorrALT        Ho  = ____________ 
 
From the almanac tabular data, at the h hour on the UT date: 
GHA table = ____________   v = ___________    
DEC table =  ____________  (1)        d = ___________ (careful of the sign) 
 
Increment of GHA for the m minutes and s seconds CorrGHA = ___________ 
Additional increment due to variation v    Corrv  =     ___________ 
(2) GHA = GHA table  + CorrGHA + Corrv    GHA =      ___________ 
 
Increment of DEC for m minutes due to rate d is  Corrd  =     ___________ 
DEC = DEC table + Corrd     DEC =      ___________ 
_____________________________________________________________ 
 
Local Hour angle LHA = GHA + Lon      LHA = ___________ 
 
   (repeat Ho here to subtract Hc from)       Ho  _______________ 
 
arcSin[ Sin(DEC) • Sin(Lat)  +  Cos(Lat) • Cos(DEC) • Cos(LHA) ]    = Hc  _ ______________ 
 
Ho – Hc = _______________ • 60  =    Offset Distance      = Doffset                  n.miles 
 
arcCos[{Sin(DEC) –   Sin(Lat) •  Sin(Hc)}/{Cos(Lat) • Cos(Hc)}]       =  Zo   ______________ 
 
True Azimuth Angle from True North Zn 
If LHA is pre-meridian passage (-, or 180<LHA < 360), Zn = Zo 
If LHA is post-meridian passage (0<LHA < 180), Zn = 360 – Zo       Zn = __________ 
 
Notes:  (1)  North is+, South is -.  East is +, West is - 

(2)  GHA table  = SHA + GHA Aries   for a star 
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Sun Shot Example 
 
Let’s say this is the data: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 14h 15m 37s 
Sextant measured altitude of the sun Hs = 52˚  52.3’   Lower Limb 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’     CorrALT = +15.3’  (interpolate in your head) 
Observed true altitude Ho = 52˚ 52.3’ + 3.4’ -2.5’ +15.3’ = 53˚ 8.5’  = 53.1416˚ 
 
From the almanac tabular data, at the 14th hour July 15 2001: 
GHA table = 28˚ 30.6’     
DEC table = +21˚ 27.3’  N          d = -0.4’ moving less northerly 
 
Increment of GHA for the 15 minutes and 37 seconds CorrGHA = 3˚  54.3’ 
GHA = 28˚  30.6’  + 3˚  54.3’ = 32˚  24.9’ = 32.4150˚ 
 
Increment of DEC for 15 minutes due to rate d is Corrd = - 0.1’ 
DEC = +21˚  27.3’  - 0.1’ =  21˚ 27.2’  = 21.4533˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 32.415˚ + - 67.850˚ = - 35.435˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(21.453˚) x Sin(44.025˚)  +  Cos(44.025˚) x Cos(21.453˚) x Cos(- 35.435˚) ]  
Hc = 53.0767˚  = 53˚  4.6’ 
 
Intercept Offset distance Doffset =  60 x (53.1416˚ – 53.0767˚) = +3.9 n mile 
Offset the assumed LOP towards the Sun azimuth. 
 
Calculated Azimuth direction of sun 
Zo = arcCos[{Sin(21.453˚) – Sin(44.025˚) x Sin(53.0767˚)}/{Cos(44.025˚) x Cos(53.0767˚)}] 
Zo = 116˚, and since LHA is negative (pre-meridian), Zn = Zo = 116˚
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Moon Shot Example 
 
Let’s say this is the data: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 14h 20m 21s 
Sextant measured altitude of the moon Hs = 44˚  22.1’   Upper Limb (UL) 
 
Altitude corrections from moon correction tables, in two parts: 
CorrDIP = -2.5’ 
CorrALT = +50.9’ + 3.2’ –30.0’ (the –30’ is for using the UL)     = 24.1’ 
True altitude Ho = 44˚ 22.1’ + 3.4’ -2.5’ +24.1’ = 44˚ 47.1’  = 44.7850  ̊
 
From the almanac tabular data, at the 14th hour July 15 2001: 
GHA table = 100˚ 23.7’     v = +12.2’ 
DEC table = +12˚ 9.4’  N          d = +11.2’   HP = 56.8’ 
 
Increment of GHA for the 20 minutes and 21 seconds CorrGHA = 4˚  51.3’ 
Additional increment due to variation v  Corrv = 4.2’ 
GHA = 100˚  23.7’  + 4˚  51.3’ + 4.2’ = 105˚  19.2’ = 105.3200˚ 
 
Increment of DEC for 20 minutes due to rate d is Corrd = +3.8’ 
DEC = +12˚  9.4’  + 3.8’ =  12˚ 13.2’  = 12.2200˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 105.32˚ + - 67.850˚ = 37.470˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(12.22˚) x Sin(44.025˚)  +  Cos(44.025˚) x Cos(12.22˚) x Cos( 37.470˚) ]  
Hc = 44.817˚  = 44˚  49.0’ 
 
Intercept Offset distance Doffset =  60 x (44.368˚ –44.817˚) = -2.0 n mile 
Offset the assumed LOP away from the moon’s azimuth. 
 
Calculated Azimuth direction of moon 
Zo = arcCos[{Sin(12.22 ˚) –    Sin(44.025˚) x Sin(44.817˚)}/{Cos(44.025˚) x Cos(44.817˚)}] 
Zo = 123˚, and since 0 <  LHA <180 (post-meridian), Zn = 360 - Zo = 237˚ 
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Star Shot Example 
 
You took a shot of Deneb in the constellation of Cygnus, morning twilight: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 8h 31m 24s 
Sextant measured altitude of Deneb,   Hs = 59˚  47.8’ 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’ 
CorrALT = -0.5’ 
True altitude Ho = 59˚ 47.8’ +3.4’  –2.5’ – 0.5’ = 59˚ 48.2’  = 59.8033˚ 
 
From the almanac tabular data, at the 8th hour July 15 2001: 
GHAAries table = 53˚ 14.4’     SHADENEB = 49˚  37.4’ 

DECDENEB = +45˚ 17.1’  N           
No v or d corrections for stars 
Increment of GHA for the 31 minutes and 24 seconds CorrGHA = 7˚  52.3’ 
GHA = 53˚  14.4’  + 7˚  52.3’ + 49˚  37.4’ = 110˚  44.1’ = 110.735˚ 
 
DEC = DECDENEB = +45˚ 17.1’  N = +45.2850˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 110.735˚ + – 67.850˚ = 42.885˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(45.285˚) x Sin(44.025˚)  +  Cos(44.025˚) x Cos(45.285˚) x Cos( 42.885˚) ]  
Hc = 59.830˚  = 59˚  49.8’ 
 
Intercept Offset distance Doffset =  60 x (59.8033˚ –59.830˚) = –1.6 n mile 
Offset the assumed LOP away from the star’s azimuth. 
 
Calculated Azimuth direction of star 
Zo = arcCos[{Sin(45.2850˚) –  Sin(44.025˚) x Sin(59.83˚)}/{Cos(44.025˚) x Cos(59.83˚)}] 
Zo = 72˚, and since 0 <  LHA <180 (post-meridian), Zn = 360 - Zo = 288˚ 
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Planet Shot Example 
 
Mars in the evening, same local day, but the next day in GMT: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/16/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 01h 11m 24s 
Sextant measured altitude of Mars,  Hs = 18˚  40.0’ 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’ 
CorrALT = -3.0’ 
True altitude Ho = 18˚ 40.0’ +3.4’  –2.5’ – 3.0’ = 18˚ 37.9’  = 18.632˚ 
 
From the almanac tabular data, at the 1st hour July 16 2001: 
GHAMARS table = 55˚ 30.6’    DECMARS  table = –26˚ 50.5’  S           
v  = +2.6’   and d =0  
Increment of GHA for the 11 minutes and 24 seconds CorrGHA = 2˚  51.0’ 
Additional increment due to variation v  Corrv = 0.5’ 
GHA = 55˚  30.6’  + 2˚  51.0’ + 0.5’ = 58˚  22.1’ = 58.368˚ 
 
DEC = DECMARS = –26˚ 50.5’  = –26.842˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 58.368˚ + – 67.850˚ = – 9.482˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(-26.842˚) x Sin(44.025˚)  +  Cos(44.025˚) x Cos(-26.842˚) x Cos( -9.482˚) ]  
Hc = 18.602˚  = 18˚  36.1’ 
 
Intercept Offset distance Doffset =  60 x (18.632˚ –18.602˚) = +1.8 n mile 
Offset the assumed LOP towards Mars’s azimuth. 
 
Calculated Azimuth direction of Mars 
Zo = arcCos[{Sin(-26.842˚) – Sin(44.025˚) x Sin(18.602˚)}/{Cos(44.025˚) x Cos(18.602˚)}] 
Zo = 171˚, and since LHA is negative (pre-meridian), Zn = Zo = 171  ̊
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Plots of the Lines Of Position (LOP) from the previous 4 examples 
 
The observer was stationary during all of the observations.  The arrows indicate 
the azimuth direction (bearing from true north) of the heavenly objects.  These 
observations are over the course of a day, from early morning twilight to mid 
morning to evening twilight.  The ellipse represents the 95% probability area of 
the position fix using all 4 LOPs. 
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Chapter 9 Putting it Together and Navigating  
 
I encourage you the navigator to program your simple calculators to provide 
the calculated altitude Hc and calculated uncorrected azimuth Zo from inputs 
of latitude, longitude, GHA, and DEC.  It’s too easy to make mistakes 
punching in numbers and doing the trig.  A simple programmable calculator 
mechanizing the simple steps in the calculations will go a long way in reducing 
the silly arithmetic errors. 
 
Plane Sailing and Dead Reckoning (DR) 
With the celestial methods described so far, an important element was the 
estimated position, also known as the dead reckoning (DR) position.  
Undoubtedly, if you didn’t reckon correctly, you would sooner or later regret it.  
Strictly speaking, an estimated position is not needed, just as it is not needed 
with the Global Positioning System.  In the case of GPS, orbiting spacecraft have 
geographical positions and circles of constant altitude, but electronically it is 
circles of constant timing.  Three spacecraft, three circles and you are 
pinpointed.  But since intersecting straight LOPs is a lot easier than solving 
simultaneous equations for intersecting circles, an estimated position is 
essential for our simple methods.  In our day-to-day wanderings, flat-Earth 
approximations are close enough to advance the estimated position from a 
previously known fix.  These approximation methods are known as plane sailing.   
 
Dead reckoning is simple to understand on a flat earth, say using your car.  If 
you head northwest at 60 mph, and you drove for 2 hours, you should be 120 
miles to the northwest of your last position.  But on a spherical surface, the 
longitude lines start to crowd in on each other as they reach the poles.  The 
‘crowding in’ at the current latitude can be thought of as being more or less 
fixed for short distances.  Just think, on the north or south pole, you could 
wander across all 360 longitude lines in just a few short steps! 

 
Plane Sailing Shorthand 
True course from true north TC 
Speed of vessel, knots 
Time interval from last fix, hours 
D = Speed x Time  distance traveled nmile 
DEW = D sin(TC)  east-west distance 
DNS = D cos(TC)  north-south distance 
ΔLat = DNS        arcmin latitude change 
ΔLon = DEW /cos(Lat) arcmin longitude change 
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Plane Sailing Work Sheet 
 
Last Known Latitude, decimal degrees N+, S-  
 

LatO = 
 
Last Known Longitude, decimal degrees E+, W- 
 

LonO = 
 

Speed of vessel, corrected for current, knots (kts) 
 

V = 
 

Time interval between the present desired fix and the last fix, decimal hours 
 

        ∆Time =   
 
True course made good (heading, compensated for leeway and current), decimal degrees 
from true north 

 
TC = 

 
Estimate of distance, nautical miles (nm) 
D = V • ∆Time 
 
Change in latitude, arcminutes 
∆Lat = D • Cos(TC)                           
 
New estimated latitude, decimal degrees  
LatDR = LatO + ∆Lat/60 
 
Change in longitude, arcminutes  
∆Lon = D • Sin(TC)/Cos(LatO + ∆Lat/120) 
 
New estimated longitude, decimal degrees  
LonDR = LonO + ∆Lon/60 
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Running Fix 
The running fix is a method by which two or more line of positions (LOPs) 
taken at different times on a moving vessel can be coalesced together to 
represent a navigational fix at any single arbitrary time between the 
observations.  Most frequently, it is used to advance an old LOP to get a fix 
with a new LOP while the ship is under way.  Quite simply, the old LOP is 
parallel-advanced in the direction of the true course-made-good (TC) to the 
DR distance between the last LOP and the new one.  With a quick study of the 
figure, the reader should discern the mechanics involved.  Essentially, if you 
produced a ‘good’ LOP earlier, you can ‘drag it’ along with your moving vessel 
as if it were pinned to the stern using the simple distance = rate x time for the 
distance to drag, and it gets dragged in the same course direction as the vessel. 
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Daily Observation Schedule 
During your typical navigating in-the-blue sort of day, you would follow a 
procedure similar to this: 
1) Pre-dawn sighting of planets and stars, providing a definite fix. 
2) Mid-morning Sun observation, advancing a dawn LOP for a running fix. 
3) Noonish sighting, advancing the mid-morning LOP for a running fix. 
4) Mid-afternoon Sun observation, advancing the noon LOP for a running fix. 
5) Twilight observation of planets and stars, providing a definite fix. 
 
Note: Morning and evening twilight observations need to be carefully planned.  
It is a time when both night objects and the horizon are visible simultaneously.  
That’s not a whole lot of time for off-the-cuff navigation.  Plan the objects, 
their estimated altitudes and azimuth angles.  Double check with the compass, 
so that you are sure of what you are looking at. 
 
A Sun-Moon fix is nice when available.  When the moon is a young moon, it 
will be in the sky east of the sun in the late afternoon.  When it is an old moon, 
it will share the sky west of the sun during the morning hours. 
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Plotting Multiple Lines of Position (LOP) with Running Fixes 
 
Plotting the LOPs is best done on a universal plotting sheet, which is a sheet 
of paper with a graduated compass rose in the center.  This is very convenient, 
as you can do everything necessary to plot a LOP, requiring in addition a 
drafting triangle and a scaled ruler.  Let us say that we have the true course TC, 
the speed V (kts), the times of the observation t1 , t2 , t3 (decimal hrs), etc., the 
observed altitudes Ho1, Ho2, Ho3, and an assumed position LATa, LONa.  
From sight reduction, we also have the calculated altitudes Ha1, Ha2, Ha3, the 
intercept distances Doffset1, Doffset2, Doffset3 and the calculated azimuths 
Zn1, Zn2, Zn3.  Since the vessel is continuously underway, we define an 
arbitrary time that we want the newest fix to apply to.  We were at such-and-
such location at such-and-such time, even though that time does not 
correspond exactly to any of the observation times.  This selected time for the 
fix is called the time of fix, tfix.  We calculate the running fix distance 
corrections that each observation will require, and designate it Roffset1, 
Roffset2, Roffset3.  The corrections are calculated thus: 
 
Roffset1 = V x (tfix – t1 ),       Roffset2 = V x (tfix – t2 ), etc..  (n.miles) 
 
Notice that for observation times after the time of fix, the offset is negative. 
 
The procedure seems complicated, but after trying it once, the mechanics will 
seem obvious.  Basically you draw the Roffset vector from the center of the 
compass rose along the direction of the true course, then draw the Doffset 
vector from the head of the Roffset vector, then draw the LOP from that 
point.  Here are the detailed steps: 
1) The very center of the compass rose on the plotting sheet is designated as 

the assumed position LATa, LONa.  All else is relative to this location. 
2) Draw a line thru the center in the direction of the true course TC going 

both ways, but with an arrow showing the forward direction. 
3) Generally there are two scales you can use.  The plotting sheet has a built-in 

scale of 60 n.miles which could just as easily be 6 n.miles for those close 
encounters.  Staying in either the 60 or 6 n.m. scale makes corresponding 
latitude and longitude measurements possible without calculations. 

4) For the first observation, measure along the true course line in the forward 
direction (if Roffset is +, backwards if Roffset is -) the distance Roffset and 
mark it with a dot. 
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5) Then from that mark, draw a line in the azimuth direction Zn, the length 
being the distance Doffset.  If Doffset is negative, draw the line in the 
opposite direction (180 degrees).  Mark the spot. 

6) Draw a line perpendicular to the Zn, passing thru the last mark.  This is the 
LOP compensated for intercept and running to an arbitrary time. 

7) Repeat for all the other LOPs. 
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Once all the LOPs are plotted, you can mark what appears to be the best 
solution of the fix.  Measure the distance with the linear scale you are using for 
the plot from the center.  The north-south distance we will designate as DLAT, 
and the east-west distance as DLON in nautical miles.  Following the sign 
conventions, if northwards or eastwards, the number is +.  If southwards or 
westwards, the number is -.  The corrective change ∆ in latitude and longitude 
from the assumed position LATa, LONa is thus: 
 
LAT∆ = (DLAT / 60)                                       decimal degrees 
 
LON∆ = (DLON/ 60)/ Cos(LATa + LAT∆/2)  decimal degrees 
 
The position of the new fix is thus: 
LATFIX = LATa + LAT∆ 
LONFIX = LONa + LON∆ 
 
The corrective change can also be deduced graphically, from the universal 
plotting sheet, as it is really set up for this.  The compass rose lets you set up 
your own custom longitude scale for your latitude.  Where the latitude angle 
intersects the circle, you draw the custom longitude line for that position.  
Remember, 1 nautical mile N-S is equivalent to 1 arcminute of latitude. 
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CALCULATING A FIX FROM MULTIPLE LOPs FROM A FIXED
 ASSUMED POSITION WHILE RUNNING

N = total number of LOPs
participating in the fix

Form the quantities A,B,C,D,E,G from these summations:

A =

1

N

n

Cos AZMn
2

=

B =

1

N

n

Cos AZMn Sin AZMn
.

=

C =

1

N

n

Sin AZMn
2

=

D =

1

N

n

Cos AZMn p1n p2n
.

=

G = A C. B2
E =

1

N

n

Sin AZMn p1n p2n
.

=

Where p1n =
Doffsetn

60
and p2n =

Roffsetn
60

Cos AZMn TC.

Doffsetn is the nth intercept offset distance, n.miles

Roffsetn is the nth running-fix offset distance, n.miles

AZMn is the nth azimuth direction of the nth heavenly body

TC is the true course angle from true north

LON I = LON A
A E. B D.( )

G Cos LAT A.
Improved Longitude estimate from the assumed position

LAT I = LAT A
C D. B E.( )

G
Improved Longitude estimate from the assumed position

dist = 60 LON I LON A
2 cos LAT A

2. LAT I LAT A
2.

Distance from assumed fix to calculated fix, nm. Should be < 20 nm.
If not, use the improved fix as the new assumed position and start all over again   
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Good Practice and Error Reduction Techniques 
 
There are many sources of error, not the least misidentification of the heavenly 
object.  Slim chance of that happening with the Sun or Moon.  With objects 
that you are sure of, a set of 3 or 4 shots of each known object can reduce 
random measurement errors.  With stars at twilight, perhaps it is better to take 
single shots but have many targets to reduce the effects of misidentification.  
This type of error has the distinction of putting you hundreds of miles off, and 
so are easy to catch, allowing you to disregard the specific data.   
 

Handling measurement random errors graphically 
 
Random Errors 
The effect of multiple shots of the same object are such that the random errors, 
some +, some -, will average to zero.  Random measurement errors of plus or 
minus several miles are handled several basic ways for a set of shots of the 
same object: 

1) Calculate all the LOPs in a set and average them graphically on the map. 
2) Arithmetically average the times and altitudes for a set of shots, and 

calculate one LOP using the averaged value of time and altitude. 
3) Graph the set of shots with time on the horizontal and altitude on the 

vertical. Draw a line representing the average and from that pick one 
time and altitude from the line to calculate one LOP. 

4) Graph the shots as in 3), but calculate a slope and fit it to the data.  The 
slope is determined by calculating Hc for two different times in the 
range of the data set with your estimated position.  With these two new 
points, draw a line between them.  Parallel offset this new line until it fits 
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best in the data points already drawn.  Then, as in 3), pick one time and 
altitude from the line to calculate one LOP. 

 
Using technique 4) should result in the most accurate LOP, however there are 
more calculations making it the same trouble as 1).  On the other hand, 
practical navigation is not usually concerned with establishing a position to 
within ¼ mile, so unless you are particular, graphing your values as in technique 
3) may be the easiest to implement with a good payoff for reducing random 
errors.  Arithmetically averaging instead of graphically averaging is a good way 
to introduce unwanted calculation mistakes, so I would steer away from 
technique 2) for manual calculations. 
   
Systematic Errors 
This species of error, where a constant error is in all of the measurements, can 
come from such things as an instrument error, a misread index error, your 
personal technique and bias, strange atmospheric effects, and clock error.  All 
but clock error can be handled with the following technique.  If you have many 
objects to choose from, choose 4 stars that are ~90 degrees apart from each 
other in azimuth, or with 3 stars make sure they are ~120 degrees apart.  This 
creates a set of LOPs where the effect of optical systematic errors cancel.   
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The steps for good practice  
 
1) For a good fix, pick 3 or more clearly identified heavenly objects. 
 
2) Pick objects that are spaced in azimuth 90 to 120 degrees apart for 

systematic error reduction. 
 
3) If you can, make a tight spaced grouping of 3 shots per object. 
 
4) Apply averaging techniques for random error reduction. 
 
5) Advance the LOPs with a running fix technique to time coincide with the 
time of your last shots. 
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Chapter 10  Star Identification 
 
There are various star finding charts, the 2102-D and Celestaire star chart come 
to mind.  However, you could use the equations for calculated altitude and 
azimuth, rearranged, to help you identify stars.  Now this only applies to the 
bright 58 ‘navigational stars’, as data for their position on the celestial sphere 
(star globe) is given. 
Rearranging the azimuth equation, we get the declination DEC: 
 
DEC = arcSin[cos(AZM) • cos(Lat) • cos(H)  + sin(Lat) • sin(H)] 
 
If the declination is +, it is North, if – then it is South. 
AZM is the approximate azimuth angle (magnetic compass + magnetic 
variation), Lat is the assumed latitude, and H is the altitude angle (don’t bother 
with dip and refraction corrections). 
Rearrange the calculated altitude equation to get local hour angle LHA: 
 
LHA = (+/-) arcCos[{sin(H)  - sin(DEC) • sin(Lat)} / {cos(Lat) • cos(DEC)}] 
 
If the azimuth is greater than 180˚, then LHA is +. 
If the azimuth is less than 180˚, then LHA is –. 
The sidereal hour angle (‘longitude’ on the star globe) is then: 
 
SHA = LHA – GHAAries – Lon 
 
Where GHA aries is the Greenwich hour angle of aries (zero ‘longitude’ on the 
star globe) at the time of this observation from the almanac, and Lon is the 
assumed longitude position. 
 
Once you have the essential information, SHA and DEC, then you can look it 
up in the star chart data to match it with the closest numbers.  If the numbers 
still don’t match any stars, then look in the almanac to match up SHA and 
DEC with any planets listed. 
 
Star magnitudes refer to their brightness.  Numerically, the larger the number, 
the dimmer the star.  The brightest stars actually have negative magnitudes, 
such as Sirius (the brightest star) has a magnitude of -1.6. 
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The 58 Navigational Stars Listing 
 
SHA DEC Star magnitude color constellation 
358 +29 Alpheratz 2.2  Great Square 
354 -42 Ankaa 2.4   
350 +57 Schedar 2.5  Cassiopeia 
349 -18 Diphda 2.2   
336 -57 Achernar 0.6   
328 +23 Hamal 2.2   
324 +89 Polaris 2.1  Little Dipper 
315 -40 Acamar 3.1   
315 +4 Menkar 2.8   
309 +50 Mirfak 1.9   
291 +16 Aldebaran 1.1 Orange Taurus 
281 -8 Rigel 0.3 Blue Orion 
281 +46 Capella 0.2 Yellow Auriga 
279 +6 Bellatrix 1.7   
279 +29 Elnath 1.8   
276 -1 Alnilam 1.8   
271 +7 Betelgeuse 1.0 Red Orion 
264 -53 Canopus -0.9   
259 -17 Sirius -1.6 White Canis Major 
255 -29 Adhara 1.6   
245 +5 Procyon 0.5 Yellow Canis Minor 
244 +28 Pollux 1.2  Gemini 
234 -59 Avior 1.7   
223 -43 Suhail 2.2   
222 -70 Miaplacidus 1.8   
218 -9 Alphard 2.2   
208 +12 Regulus 1.3  Leo 
194 +62 Dubhe 2.0  Big Dipper 
183 +15 Denebola 2.2  Leo 
176 -18 Gienah 2.8   
173 -63 Acrux 1.1   
172 -57 Gacrux 1.6   
167 +56 Alioth 1.7  Big Dipper 
159 -11 Spica 1.2 Blue Virgo 
153 +49 Alkaid 1.9  Big Dipper 
149 -60 Hadar 0.9   
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SHA DEC Star magnitude color constellation 
148 -36 Menkent 2.3   
146 +19 Arcturus 0.2 Orange Bootes 
140 -61 Rigil Kent 0.1   
137 -16 Zuben’ubi 2.9   
137 +74 Kochab 2.2 Orange Little Dipper 
126 +27 Alphecca 2.3   
113 -26 Antares 1.2 Red Scorpio 
108 -69 Atria 1.9   
103 -16 Sabik 2.6   
097 -37 Shaula 1.7   
096 +13 Raselhague 2.1   
091 +51 Eltanin 2.4   
084 -34 Kaus Australis 2.0  Sagittarius 
081 +39 Vega 0.1 White Lyra 
076 -26 Nunki 2.1  Sagittarius 
062 +9 Altair 0.9  Aquila 
054 -57 Peacock 2.1   
050 +45 Deneb 1.3  Cygnus 
034 +10 Enif 2.5   
028 -47 Al Na’ir 2.2   
016 -30 Fomalhaut 1.3   
014 +15 Markab 2.6  Great Square 
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THE CELESTAIRE STAR CHART 
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Chapter 11 Special Topics 
 
Determining Longitude and Latitude Individually 
Some simplified methods can be used at specific times of the day to calculate 
latitude and longitude individually, then combining them with running fix 
techniques.  A scenario like this presents itself:  take the height of Polaris at 
dawn twilight for a latitude fix, then with the timing of sunrise or just after with 
the prime vertical sight determine longitude.  Use the running fix technique to 
‘drag’ along the latitude LOP to time coincide with the longitude LOP. 
 
These techniques are probably not used so much anymore, since with tabular 
methods and calculators the complexity of the navigational triangle is not so 
daunting.  In other words, the only limitations now are ones of visibility of the 
heavenly object, not mathematical. 
 
Latitude Determination, a purely East-West LOP 
 
By meridian transit 
This has already been covered in the discussion of the noon sighting for the 
sun.  One could do it for any heavenly body, but the sun is the favorite. 
 
 
By the height of Polaris 
Since Polaris is not exactly on the celestial north pole, corrections for this slight 
offset and annual aberration must be accounted for.  The nautical almanac has 
tables where: 
Latitude = Ho -1˚ + ao + a1 + a2,  where Ho = Hs +IC+CorrDIP+CorrALTstar 
ao is a function of local hour angle LHA 
a1 is a function of estimated latitude 
a2 is a function of what month it is 
 
By the length of time of day 
If you measure the time of day from sunup to sunset in hours, minutes, and 
seconds, you can calculate your latitude.  Start the timing and end the timing 
when the sun’s lower limb is about ½ diameter above the horizon.  Convert the 
time into decimal hours, and name it ElapsedTime. 
 
Lat = arcTan[ -cos(7.5 x ElapsedTime) / tan(DEC)] 
 
You maybe off by 10 arcminutes latitude depending on your timing technique. 
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Longitude Determination, a purely North-South LOP 
 
By the timing of sunrise or sunset 
The equations simplify when the true altitude Ho is zero.  But due to dip, 
refraction, semi-diameter and index error, the sextant altitude needs to be 
preset at a low but specific angle to catch the sun at true horizon sunrise or 
sunset.  If: 
Ho = Hs  + IC + CorrDIP + CorrALT  then Hs = Ho – IC – CorrDIP – CorrALT 
So, for Ho = 0: 
Hs = – IC – CorrDIP – CorrALT 
It should be apparent that: 
Ha = – CorrALT = –R – SDLL   or   = –R + SDUL 
Since the average sun semi-diameter is 16’, we can figure the refraction 
correction for when Ho = 0.  Refraction correction is a function of Ha, so we 
need to do a little iteration.  Fortunately I’ve done it for you, so here are the 
results: 
Using the sun’s lower limb (LL), the CorrALT = – 15.5’   LL 
Using the sun upper limb (UL), the  CorrALT = – 43’      UL 
 
In short, set the sextant to: 
Hs = – IC – CorrDIP + 15.5’  (LL)  or  Hs = – IC – CorrDIP + 43.0’  (UL) 
 
The dip correction is always negative, but in this equation the double negative 
will make this number a positive.  Same with the altitude corrections in this 
case.  With the sextant preset to this angle, when the sun’s limb kisses the 
horizon, observe the time UTC.  In the almanac, look up the GHA and 
declination, adding the increments for the minutes and seconds. Longitude is 
then: 
Lon = {(+ / -) arcos[-Tan(Lat) x Tan(DEC)]}  - GHA, 
 (+ / -) negative if sunrise,   (+ / -)  positive if sunset 
 
Example: 
IC = -2.1’,  h = 2 meters, so CorrDIP = - 0.5’.      Latitude = 41.75˚ 
With the sun’s LL CorrALT =  - 15.5’ 
So, preset the sextant angle to Hs = -(-2.1’) – (-0.5’) – (- 15.5’) = + 0˚ 18.1’ 
When the sun is at this altitude, the time was 11h 30m 10s.  From the almanac 
let’s say that GHA =345.390˚, and DEC = 10.235˚ N 
So: Lon = – arcos[-Tan(41.75˚) x Tan(10.235˚)]  - 345.39˚   = - 444.664˚ 
Add 360 to it, Lon = 360˚ – 444.664˚ = - 84.664˚ West Longitude 
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By the prime vertical sight 
If you will recall the illustration on page 21, the prime vertical circle goes from 
due east to the zenith to due west.  In the summer months, the sun will rise a 
bit to the north of east (northern hemisphere) and it may be some time after 
sunrise that the sun crosses this imaginary line.  When it does, the azimuth is 
exactly 90˚. This simplifies the equations such that: 
 
Ho = arcsin[Sin(DEC) / Sin(Lat)] 
Work out the sextant angle by: 
Hs = Ho – IC – CorrDIP – CorrALT 
Determine the UTC time when this condition occurs, then look up in the 
almanac GHA for the sun.  Then: 
Lon = (+ / -) arcsin[Cos(Ho) / Cos(DEC)] - GHA 
(+ / -) negative if near sunrise,   (+ / -)  positive if near sunset 
 
Example: 
IC = -2.1’,  h = 2 meters, so CorrDIP = - 0.5’.      Latitude = 41.75  ̊
If Ha ~ 15˚ then CorrALT = +12.5’ 
For the approximated time, from the almanac DEC = 10.260˚ N 
Ho = arcsin[Sin(10.260˚) / Sin(41.75˚)] = 15.515  ̊
When the sun is at this altitude, the time was 12h 54m 3s.  From the almanac 
lets say that GHA =6.365˚, and DEC = 10.260˚ N 
Lon =  - arcsin[Cos(15.515˚) / Cos(10.260˚)] – 6.365˚ = - 84.664˚ West 
 
By the time sight 
This uses the Sumner line equation, used only once by imputing your best 
estimate for latitude.  Be careful of the (+/-) sign, determine if the object is pre 
or post meridian.  Easily done with the sextant, if the object continues to rise, it 
is pre meridian.  The closer to meridian transit the less accurate the answer 
since at meridian transit the LOP is East-West, not North-South.  In these 
circumstances, a little error in latitude will translate into a large longitude error 
from the calculation. 
East side of the circle when the object is westwards (post meridian): 
Lon = arcCos[{ Sin(Ho) - Sin(DEC) • Sin(Lat)}/{Cos(Lat) • Cos(DEC)}] – GHA 
 
West side of the circle when the object is eastwards (pre meridian): 
Lon = -arcCos[{ Sin(Ho) - Sin(DEC) • Sin(Lat)}/{Cos(Lat) • Cos(DEC)}] – GHA 
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 Chapter 12  Lunars 
 
These days, with quartz watches and radio time-ticks, lunars are for the hard-
core celestial zealot.  This is a method where by you can reset your 
untrustworthy chronometer if you are in the middle of the ocean (or anywhere) 
without friends or a short-wave radio.  Or perhaps you just want to feel 
challenged. 
Essentially the arc-distance between the moon’s limb and a heavenly object 
close to the ecliptic plane (such as a planet) is measured.  Since the arc distance 
is changing with time relatively fast, one can infer a particular time in UT to a 
particular arc distance.  The nautical almanac contains predictions for both 
objects, and so the arc distance between the two objects can be worked out as a 
function of time.  The almanac many years ago contained these functions, but 
stopped in 1907.  It must be done by calculation or by special lunar tables. 
Since the moon appears to orbit about the Earth once every 29 ½ days (27 1/3 
days in inertial space), the angular closing speed between the moon and a planet 
or star near the ecliptic plane, from our earthly point of view, is about ½ 
arcminute per minute of time.  Practically speaking, between messy 
observations and even messier calculations, this means you won’t get any closer 
to the real time by a minute or so.  Still, that’s not bad, it just means you’ll have 
to make allowances in your longitude estimate, to the tune of 15 x Cos(Lat) 
n.miles per minute of time error.  But you won’t know the error, so you’ll just 
have to assume something like 2 minutes of time. 
The tabular data in the almanac does not consider refraction or parallax, and so 
the observer will have to correct for it.  In order to do that, the observer must 
nearly-simultaneously obtain the altitudes of both the moon and star (or planet) 
as well as the actual measured arc distance between the two.  Whew!  It helps to 
have two friends in the same boat with sextants.  It is possible that the errors 
will be small if you take three consecutive measurements within a few minutes, 
since the altitude measurements are for refraction and parallax corrections, which 
won’t change fast.  By small, I mean the time estimate may be off by several 
minutes per degree of altitude change.  A degree of altitude change at it’s worst 
will take 4 minutes (at the equator).  But if the measurements are taken with the 
objects near the meridian line, you may have quite a bit of time to make 
measurements sequentially.  In fact, one can measure sequentially and correct 
the altitude measurements to time coincide with the arc distance measurement, 
a sort of ‘running fix’ correction on altitude. 
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If the time difference between the arc measurement and altitude measurement 
is δT minutes of time, then add this increment to the altitude measurement: 
 
 δH = 15• [-Cos(LAT) •Cos(DEC) •Sin(LHA)/Cos(Ho)] • δT arcminutes 
 
where δT = Tarc – Taltitude in minutes of time.  Tarc refers to the time you 
took the arc distance measurement, and Taltitude is the time you took the 
altitude measurement.  The absolute time is not important, rather the time 
difference is what should be accurate.  Since there are 2 altitude measurements, 
there will be a δHstar, and δHmoon increment based on time increments 
δTstar, δTmoon. 
LAT is your latitude, DEC is the declination of the observed object, LHA is 
your best guess at the local hour angle for the object, and Ho is the observed 
altitude for the object (Hs + SD is close enough).  This way, the parallax and 
refraction corrections will be identical had you done simultaneous 
measurements. 
When the measured arc distance Ds is corrected for index error, refraction, and 
semi-diameter, it is referred to the apparent arc distance Da.  When final 
corrections are made for parallax, the resulting number is the arc distance as 
seen from an observer at the Earth’s center.  That final arc distance is 
designated as Dcleared and the entire procedure is known as clearing the lunar 
distance.  The equation for Dcleared presented here was first published in 1856 
by J.R. Young, though I derived the exact same equation when approaching the 
problem. 
 
The case presented is for when you don’t know the exact time and you have 
made the three necessary measurements as though you were doing it for real.  
Besides, it’s fun.  Well, sort of.  This entire task is simplified if you have a 
computer and use MathCad software to write and evaluate the equations.  By 
the way, good luck. Oh, as far as sequencing the observations to minimize 
errors if you don’t feel like make the ‘running fix’ corrections, do this: 

1) measure the arc distance first 
2) measure the altitude of the most east/west next, quickly 
3) measure the altitude of the southern/northern most object last 

The objects farthest away from meridian passage change altitude the quickest 
and should be measured soonest after the arc distance measurement. 
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--------------------------------- Clearing the distance from a  lunar observation  ---------------------------------------

IC Index Error Correction, degrees Change all angle data into
decimal degrees

h eye Eye Height above seal level, meters

Hs star Measured Altitude of star or planet with Sextant Scale, deg

Hs moon Measured Altitude of the Moon with Sextant Scale, deg

Measured arc distance from Lunar limb to star or planet center
 with Sextant Scale, degDs

UT s Your imperfect clock time noted at the observation of Ds, convert to decimal hours

sgn limbH When measuring altitude, lower limb is +1.  upper limb is -1

sgn limbD When measuring arc distance, near limb is +1.  far limb is -1

HP Horizontal Parallax HP,  from the nautical almanac, degrees

SD moon  = 0.2724 HP. Lunar semi-diameter, degrees

From this table, determine the
refraction correction for the star and 
the moon

Record values for:

R star

R moonConvert the dip and refraction corrections to decimal degrees !!
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Next we get tabular values for GHA and declination for the moon and the star in the
UT hour we think we are in.  We will designate that hour as "UT1".

GHA1 moon DEC1 moon GHA1 star DEC1 star

Calculate the arc distance at UT1, no parallax, or refraction (geocentric)

D 1  = arcCos Cos GHA1 moon GHA1 star Cos DEC1 moon. Cos DEC1 star. Sin DEC1 moon Sin DEC1 star.

----------------------------------------------------------------------------------------------------------------------------

Next we get tabular values for GHA and declination for the moon and the star at the
next UT hour from UT1.  We will designate that hour as "UT2". (UT2 = UT1 + 1.0)

GHA2 moon DEC2 moon GHA2 star DEC2 star

Calculate the arc distance at UT2, no parallax, or refraction (geocentric)

D 2  = arcCos Cos GHA2 moon GHA2 star Cos DEC2 moon. Cos DEC2 star. Sin DEC2 moon Sin DEC2 star.

----------------------------------------------------------------------------------------------------------------------------

The fraction of time in decimal hours before (-) or ahead (+) of UT1 hour is:

∆TIME  =
D cleared D 1

D 2 D 1
Decimal hours, this value can be positive or negative

Best estimate of the time of observation when the arcdistance
Ds was measured, decimal hoursUT observation  = UT1 ∆TIME

Clock error, decimal hours.
Positive means clock is fast, negative clock is slowTIME error  = UT s UT observation

Convert the decimal hour to minutes by multiplying by 60
For example, TIMEerror = - 0.14765 is:
60 x - 0.14765 =  8.859 minutes slow = 8 minutes 52 
seconds slow

NO ITERATION REQUIRED
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Chapter 13 Coastal Navigation Using the Sextant 
Early in this book a surveyor’s technique was mentioned, and it is useful in 
costal navigation where the relative angle between the observer and 3 identified 
costal objects are measured.  This is the 3 body fix technique, and will be 
described in detail. 
A wonderful property of a simple circular arc with 2 end points is that a line 
drawn from one end point to anywhere on the arc back to the other end point, 
is the same angle as any other line similarly drawn to another point on the arc. 

 
If you are an observer measuring the 
relative angle between two known objects 
on the map, there will exist one unique 
circle of position where anyone on that 
arc will measure the same angle between 
the two known coastal objects.  Include 
another observation for a third coastal 
object and make a second angle 
measurement.   Take for example points 
A and B on the map (maybe they are 
water towers, or prominent points).  An 
observer measures the relative angle ‘a’ 

between them using the sextant held sideways.  Then the 
observer measures an angle ‘b’ between points B and C (or A 
and C).  The navigator then constructs the two arcs on the 
map, and where they cross is the position fix.  For any arc, if D 
is the distance between A and B, then the circle’s radius R: 
R = 0.25D*[tan(a/2) + 1 / tan(a/2)] 
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Constructing the arcs by graphical means 

The first step is to draw the baseline 
between points A and B.  Recalling how to 
draw perpendicular bisectors from middle 
school geometry using a bow compass, do 
so for the baseline. 
 
 
 
 
 
 
 
 

After the bisector is constructed, use a 
protractor and measure an angle away 
from the baseline of (90-a/2) from point 
‘A’, if the measured angle with the sextant 
was ‘a’ degrees.  Where it intersects the 
bisector, call this point ‘X’. 

 
Then draw another perpendicular to split 
the line A-X, carrying this line until it 
intersects the first bisector.  Call this point 
‘Y’.  It represents the center point of the 
circle of position. 
 
 
 
 
 
 

 
Finally, using point Y as the center, use the 
bow compass to draw an arc by setting the 
radius to include either points A, B, or X.  This 
is the circle of position.  Repeat steps for 
drawing the circle of position for points B and 
C with included angle ‘b’.  Voila! 
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Appendix 1 Compendium of Sight Reduction Equations 
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Appendix 2  Making Your Very Own Octant 
 
Frames for octants can be made from just about any clear wood.  In the case of 
the author’s octant, it was made from ¾ inch thick clear maple, and epoxied to 
form the fine-boned frame shown here.  The mirrors are indexed to their 
position using 3 brads, 2 along the bottom forming a horizontal line, and the 
third brad along the side to index side-to-side motion.  Brass shim stock cut 
into rectangles and formed over a round pencil produced the U-shaped mirror 
retaining springs.  One-inch long #4-40 screws and nuts are used to make a 3-
point adjustable platform for mirror alignment 

The arc degree scale and Vernier scale were drawn in a 2-D computer aided 
design program and printed out at 1:1 scale.  The laser and bubble jet printers 
of today are amazingly accurately.  The Vernier scale should not go edge to 
edge with the degree scale, but rather overlap it on a tapered ramp.  This means 
that you do not need to sand the wood edge perfectly arc-shaped, so only the 
degree scale needs to be placed with accuracy.  The Vernier scale is moved 
radially in and out until it lines up perfectly with the degree scale, only then is it 
glued to the index arm.
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Mirrors 
Surprisingly good mirrors can be found in craft stores, 2”x2” for about 25¢ 
each.  Terrible mirrors can be had at the dollar store out of compacts.  The 
quality can be surmised by tilting the mirror until you are seeing a small 
glancing reflection of something.  Ripples (slope errors) will be quite evident at 
these high reflection angles.  The ripples may be just in one direction, and so 
the mirror can be oriented on the sextant to minimize altitude distortions.  The 
next best is to order a second surface mirror (50mm square) from an optics 
house such as Edmunds Scientifics for about $4.  In their specialty house, you 
can order first surface mirrors for maybe $20.  The second surface mirrors are 
good enough for a homemade (and professional) sextant.  Removing the 
aluminized surface for the horizon mirror requires patience, and is best 
accomplished with a fixture to hold the mirror and a guide for the tool.  The 
back has a protective coating that must be removed to get to the reflective 
material.  For a tool, I use a very well sharpened/honed 1” wide wood chisel.  
The edges should be slightly rounded so as not to dig in.  Under no 
circumstances should you use a scotch-brite pad to remove the silvering, as it 
will scratch glass.  The silvering can best be removed with a metal polisher such 
as Brasso, using a soft cloth. 
 
Shades 
Shades for the sky and horizon filters can be made from welder’s mask 
replacement filter plates, available at welding supply houses for about $1.65.  
They cut out 99.9% of harmful UV and infrared heat as well as act as neutral 
density filters to reduce the over-all amount of visible light.  The welding 
shades are numbered 1 thru 16, 1 being the lightest and 16 the darkest.  Shades 
can be additive, that is a #5 shade plus a #6 shade is equivalent to a #11 shade.  
A #4 shade allows about 13% visible transmission, while a #5 allows around 
5%.  Shades equivalent to a commercial sextant (by unscientific methods) is 
approximately 14, 10, 4 for the sky filters and 8, 4 for the horizon filters. Most 
of these welder’s shades will turn the Sun green.  Replacement shade filter 
plates typically can be found for 4 thru 14.  Use a 5, a 10, and a 14, which 
would seem to cover all viewing situations without having to double-up on 
filters (the glass is not perfect, and more than one filter will distort the Sun’s 
image slightly).  A 4 and 6 for the horizon will give 4, 6, and 10.  The problem 
of contrast arises, a green sun disk on a green horizon.  But safety of your eyes 
is paramount, no sense of increasing chances of cataracts due to ultraviolet 
overexposure.  Buy the plates in a 2 by 4.25 inch size, and cut them in half to 
make 2 squares.  Now glass cutting these thick plates is no laughing matter.  I 
have found that if you score lines with a handheld glass cutter on the front and 
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back (and edges too) so that the lines are right over each other, you stand a 
much better chance of a successful cut.  This will require practice… 
 
Springs 
Torsion springs to hold the mirrors in place can be easily made by wrapping 
thin (0.015”) music wire around larger diameter music wire or brad nails.  Leaf 
type springs can be cut out from 0.010” brass sheet stock or tin can lids, and 
wrapped around a pencil to get a ‘U’ shape. 
 
Sighting telescope 
A simple Galilean telescope can be made with a convex lens for the objective 
lens, and a concave lens for the eyepiece.  The image will be upright, and the 
magnification need not be greater than 3.  The convex lens has a positive focal 
length (FL1), while the concave lens has a negative focal length (FL2).  The 
spacing ‘S’ between the lenses should be FL1+FL2, and the magnification ‘M’ 
is -FL1/FL2.  For example, if the objective lens has a focal length of 300mm 
and the eyepiece lens has a focal length of -150mm, then: 
Spacing S = FL1 + FL2 = 300 + (-150) = 150mm 
Magnification M = - (FL1/FL2) = -(300 / (-150)) = 2 
 
Edmunds Scientifics sells 38mm diameter lenses for about $3 to $4 each. 
The tubes can be made with a square cross section using basswood or thin 
hobby plywood.  
 

 
Paint the insides of the tube flat black.  The baffles are used to keep stray light 
from glaring up the insides of the tube, which then reflect into the eyepiece.  
These baffles effectively trap the unwanted light.  Generally speaking, the more 
baffles, the better the image contrast. 
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Photos of the Octant 
 
Making of the telescope  Horizon mirror and mount 

 
 

 
The completed Octant 
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Appendix 3 On-Line Resources for Celestial Navigation 
 
Star Path navigational school 
http://www.starpath.com/resources/cellinks.htm 
 
Celestaire 
http://celestaire.com/catalog/ 
 
On-line nautical almanac 
http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa 
 
US Naval Observatory 
http://aa.usno.navy.mil/data/docs/celnavtable.html 
 
Celestial navigation net- good all around source 
http://www.celestialnavigation.net/index.html 
 
A short guide to celestial navigation and freeware 
http://home.t-online.de/home/h.umland/index.htm 
 
Official UTC time 
http://nist.time.gov/timezone.cgi?UTC/s/0/java 
 
International Earth Rotation Service, gives delta T for Dynamical Time 
http://maia.usno.navy.mil/ 
 
Edmunds Scientifics, supplier of mirrors and lenses 
http://www.scientificsonline.com/ 
 
Edmund Optics, higher grade of optics 
http://www.edmundoptics.com/catalog/ 
 
American Science and Surplus, with all sorts of spare optical stuff 
http://www.sciplus.com/ 
 
My web site:  http://mysite.verizon.net/milkyway99/index.html 
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